
Appendix

A Importance of Upsampling

In addition to image denoising, we demonstrate that the unlearnt upsampling operation is key to other image restoration tasks as
well, as shown in Fig.12. The experiments are conducted using MLP-Decoder, same as the setup for Fig.3 (a).
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Fig. 12: Influences of the architecture components on super-resolution and image inpainting, evaluated on MLP-Decoder. The
baseline method for super-resolution is nearest-neighbor interpolation.

B Additional Comparisons

To illustrate that our architectural design is also advantageous in avoiding the early-stopping oracle, here we additionally compare
with a recent method proposed by Shi et al. (2022) [7] that explicitly detects the timing for stopping by regularizing the norms
of the weights and using the ratio of no-reference blurriness and sharpness as the stopping criterion. Their method introduces
new hyperparameters such as the regularization granularity, the sigmas of Gaussian upsampling varied across layers and the ratio
eplison. We followed the default choices for these hyper-parameters. The optimization stops at around 5000th iteration , where
the criterion is met. For NAS [2] and ISNAS [1] methods, the training is early-stopped at the 1200th iteration. For all the other
methods including ours, a fixed iteration number of 3000 is adopted.

Table 7: Quantitative results on Set9 [3] with varying noise levels.

Method
σ = 25 σ = 50

PSNR SSIM PSNR SSIM

Shi et al. [7] 28.45 0.851 24.28 0.706
Ours 30.26 0.900 26.13 0.833



Fig. 13: Qualitative comparisons on ’F16’ from Set9 [3] under Gaussian noise with σ = 25

Fig. 14: Qualitative comparisons on ’F16’ from Set9 [3] under Gaussian noise with σ = 50



C The Customized Upsamplers

C.1 Filter Construction

As stated in the main text, upsampling can be seen as zero insertion followed by filtering. We therefore insert zeros into the input
in an interleaved fashion, and then perform filtering with the following filter coefficients respectively:

Nearest neighbor (NN): [0.5, 0.5]
Bilinear: [0.25, 0.5, 0.25]
L14: [-0.0054, -0.0518, 0.2554, 0.6036, 0.2554, -0.0518, -0.0054]
L15: [0.0105, -0.0263, -0.0518, 0.2763, 0.5826, 0.2763, -0.0518, -0.0263, 0.0105]
L−60: [-0.001921, -0.004291, 0.009947, 0.021970, -0.022680, -0.073998, 0.034907, 0.306100, 0.459933, 0.306100, 0.034907,

-0.073998, -0.022680, 0.021970, 0.009947, -0.004291, -0.001921]
L−100: [0.000015, 0.000541, 0.003707, 0.014130, 0.037396, 0.075367, 0.121291, 0.159962, 0.175182, 0.159962, 0.121291,

0.075367, 0.037396, 0.014130, 0.003707, 0.000541, 0.000015]
L16: [-0.0006, 0.0129, -0.0294, -0.0518, 0.2800, 0.5777, 0.2800, -0.0518, -0.0294, 0.0129, -0.0006]
L17: [0.0003, -0.0001, -0.0043, 0.0065, 0.0205, -0.0499, -0.0475, 0.2936, 0.5621, 0.2936, -0.0475, -0.0499, 0.0205, 0.0065,

-0.0043, -0.0001, 0.0003]

Particularly, L14, L15, L16 and L17 are Butterworth filters which have a maximally flat frequency response in the passband.
They are designed to match the passband frequency response of the Nearest Neighbor. They have the same bandwidth of 0.5,
but with a different order that determines the steepness of the transition from the passband to the stopband. L14 is a 6-order
1-D Butterworth low pass filter (LPF) corresponding to a 7 × 7 kernel in 2-D. Its coefficients can be obtained in matlab via:
maxflat(6, ’sym’, 0.5). L15 is an 8-order (9 × 9 kernel in 2-D) Butterworth LPF and can be obtained via maxflat(8, ’sym’, 0.5).
L−60 and L−100 are designed using the Kaiser window. For L−60, we set the cutoff frequency to 0.46 and the beta of the Kaiser
window to 4.5. For L−100, we set the cutoff frequency to 0.1 and the Beta of the Kaiser window to 10. With these coefficients,
each filter is constructed as below and can then be used as a plug-in module for any network architecture.

Algorithm 1: PyTorch-style pseudocode for customized upsampling
# upx: the upsampling scaling factor in the x direction
# upy: the upsampling scaling factor in the y direction
# x: the input to be upsampled
def InsertZeros(x, upx, upy, gain=1.0):

b,c,h,w = x.size()
x = x.reshape([b, c, h, 1, w, 1])
x = F.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
x = x.reshape([b, c, h * upx, w * upy])
x = x * gain
return x

# LPF construction
# w: the coefficients
def lowpass_conv(num_chns, w, pad_size=’same’, pad_mode=’zeros’, gain=1.0):

# filter size
k_size = len(w)
# Convert 1D LPF coefficients to 2D
f_2d_coeff = torch.outer(w,w)
f_weights = torch.broadcast_to(f_2d_coeff, [num_chns, 1, k_size, k_size])
conv = nn.Conv2d(num_chns, num_chns, kernel_size=k_size, stride=1, padding=pad_size,
padding_mode=pad_mode, bias=False, groups=chs) # Initialize a filter
f_weights = f_weights * gain
conv.weight.data = f_weights
conv.weight.requires_grad = False
return conv

C.2 Evaluation on an hourglass architecture

To supplement the table in Fig.4, we repeated the evaluation of the customized upsamplers on the original DIP model [8], i.e., a
5-level hourglass architecture with full skip connections and 128 channels per layer.



Similarly, we also observe that NN, L14 and L15 are the fastest to reach the Peak PSNR for both kinds of images (Table 10),
and since DIP [8] is more heavily-parameterized than ConvDecoder [4], they lead to performance drop in both cases sooner due
to over-fitting (Fig. 9, Fig. 10). By contrast, Bilinear, L−60 and L−100 perform relatively more stably throughout the training, and
benefiting from the enhanced model capacity, they achieve better results than they do on ConvDecoder. This again suggests that
the final performance depends on the balance between the increased depth/width and upsampling operations.

Table 8: Peak PSNR values.

NN L14 L15 L16 L17 Bilinear L−60 L−100

Coarse-grained 32.05 32.28 32.38 32.19 32.48 32.39 32.22 31.35
Fine-grained 25.14 25.15 25.10 25.02 25.01 24.64 24.60 21.85

Table 9: Final PSNR values at the 3000th iteration.
NN L14 L15 L16 L17 Bilinear L−60 L−100

Coarse-grained 22.67 ↓ 25.64 ↓ 26.90 ↓ 27.42 ↓ 29.40 ↓ 31.67 30.43 31.35
Fine-grained 22.65 ↓ 23.92 ↓ 24.52 ↓ 24.64 ↓ 24.90 24.65 24.60 21.85

Table 10: The iteration number [iter./3000] where the peak PSNR is reached with different upsamplers. As the strength of
attenuation increases (from left to right), the slower the peak PSNR is reached.

NN L14 L15 L16 L17 Bilinear L−60 L−100

Coarse-grained 926 1197 1153 1275 1953 2151 3000 3000
Fine-grained 1497 1935 2250 2426 2730 3000 3000 3000

D Large-Scale Validation Experiments

D.1 Depth and Width

To further illustrate the influences of depth and width, we test the hourglass architectures with 1 ∼ 8 encoder-decoder layers (i.e.,
1 ∼ 8-level) and the following width choices {32, 48, 64, 96, 128, 256, 512} and ran all 8× 7 = 56 combinations. Note that skip
connections are not involved and every decoder layer is assumted to be followed by a 2× bilinear upsampling operation.

Fig. 15: SSIM (↑) values of different depth and width combinations for fine-grained images. These images are sensitive to the
increased depth where the low-pass filtering effects caused by upsampling are stronger, since they have a wider bandwidth and are
more susceptible to losses of high-frequency details. Thus, the high-performing architectures tend to be shallow (1 < depth ≤ 4)
and wide (128/256 channels). They are also robust to width choices 96 ∼ 256 channels. No skip connections are involved.



Fig. 16: SSIM (↑) values of different depth and width combinations for coarse-grained images. The low-pass filtering effects
of the upsampling do not affect them much since they are dominated by low frequencies and most of the energy is concentrated
on the center of the spectrum. Thus, they are robust to depth choices: 2 ∼ 8 layers. However, they become sensitive to width
when the network is shallow (less attenuation) where over-fitting can easily occur with larger width. Thus, the high-performing
architectures tend to be narrow. No skip connections are involved.

As shown in Fig. 15 and Fig. 16, the architectural characteristics of fine-grained and coarse-grained images are dramat-
ically different: the high-frequency abundant images necessitate shallow and wide networks to preserve the fine details; the
low-frequency dominated images are robust to a wider range of depth choices but necessitate narrower width to prevent over-
fitting when the depth is low. Meanwhile, although we only have three pre-defined width choices (i.e., 32, 64, 128) for this study,
it can be seen that the images are quite robust within a certain range – this means that simple averaging (e.g., 48, 96) would work
well for ambiguous cases in practice.

D.2 Skip Connections

Our base model is an encoder-decoder architecture with 5 layers for each. Initially, it is free of upsampling/downsampling and
skip connections. We then add skip connection and upsampling (downsampling at the corresponding position on encoder) to the
base model and test the performance.

Since the skip connections are freely added to the model, there are C0
5+C1

5+C2
5+C3

5+C4
5+C5

5 = 32 diffrent skip connection
patterns. The rescale (downsampling-upsampling pairs) pattern is more complicated because we not only consider ×2 rescaling,
but also ×4, ×8, ×16, and ×32 rescaling for one downsampling/upsampling layer. The number of possible arrangements for



(a) ’Baboon’ (128-channel, fine-grained) from Set9 [3] dataset. The red line denotes the median number of models, and the orange line denotes
the maximum. As more skip connections are added, an increasing number of models perform better, which may imply that skip connections
reduce the actual down-/up-sampling rate and thus the low-pass filtering effects.

(b) ’F-16’ (64-channel, coarse-grained) from Set9 [3] dataset, The red line denotes the median number of models, and the blue line denotes the
maximum. More skip connections do not substantially benefit the coarse-grained images and may even increase the risks of over-fitting.

(c) ’House’ (32-channel, coarse-grained) from Set9 [3] dataset. The red line denotes the median number of models, and the orange line denotes
the maximum. On this case, more skip connections incur over-fitting more easily.

Fig. 17: The distribution of the final PSNR scores of the 7424 models



downsampling-upsampling pairs is 1 + 5 + 15 + 35 + 70 + 106 = 232. Therefore, our experimental results are comprised
of 32 × 232 = 7424 combinations in total. We ran these models on a 128-channel ("Baboon"), a 64-channel ("F16") and a
32-channel image ("House") respectively. The results are summarized in Fig. 17, Fig. 18 and 19. Overall, skip connections help
enhance the performance on fine-grained images but can cause over-fitting on the coarse-grained ones, likely because the actual
down-/up-sampling rate is reduced.

E Texture-DIP Dataset

E.1 Texture Feature Extraction

Spatial features. Texture coarseness can also be characterized by the number of neighboring pixel pairs having the same grey
values, which is the basis of the Grey Level Co-occurrence Matrix (GLCM) haralick1973textural, a classic tool for texture
analysis. We derive four kinds of statistics from the GLCM of each image, i.e., dissimilarity (
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4 }, leading to a total of 16 features for each image. The features are then sent to Decision Tree for further

selection.
Frequency feature. Coarse texture dominated by large homogeneous spatial structures has its Power Spectral Density (PSD)

concentrated on low frequencies, which drops off rapidly towards higher frequencies, while finer texture exhibits a more mod-
erate decay. To characterize the decay trend, a straightforward way is to use the ratio of the magnitudes at lower frequencies
and the magnitudes at higher frequencies. To do so, we first convert the 2D power spectrum of the image from its Carte-
sian coordinates S(k, l) to polar coordinates, and compute its 1D representation via azimuthally averaging over θ, defined as
Ŝ (r) = 1

2π

∫ 2π

0
S (r, θ)dθ with r =

√
k2 + l2 and θ = atan2(k, l), which represents the mean magnitude of the frequencies with

respect to the radial distance r. The averaging of the frequency components along circles also smooths the noise components. For
the obtained spectral vector, we drop the DC power and normalize it to [0, 1].

E.2 Decision Tree and SVM for Width Classification

Fig. 18: A sample decision tree from a group (5) of randomized decision trees for feature selection. The input is denoted as x.
The nodes starting with x[n] ≤ threshold are decision nodes, which splits the data most efficiently based on the features. The
nodes starting with gini = 0.0 are end nodes, indicating a decision is reached. The construction of the decision tree is based on
the Gini impurity values, which in turn determines the importance of the features.

To illustrate the correlations between width and image texture, we perform a width classification task with texture features
as the inputs. We first pre-process the inputs by performing feature selection. Specifically, we used the Extra Trees Classifier



[5]. Similar to Random Forests, Extra Trees is an ensemble machine learning approach that trains a group of decision trees
and aggregates the results of them to make the final prediction. Compared to deep learning, the Extra Trees Classifier is more
explainable, has lower computational costs and can reduce bias because the Extra Trees Classifier samples the whole dataset
when constructing the trees while the Random Forests Classifier subsamples the inputs at a time.

Implementation details. The feature selection is performed in the form of 5-fold cross-validation. In each fold, the Extra
Trees Classifier fits the training set and tests on the held-out set. For dividing a decision tree, it selects the best features based on
Gini impurity, which measures the purity of the sub-split and can be computed as below:

For a classification problem with K outcomes and n samples, pi = 1
n

∑
y∈Qn

I(y = k),

GI = 1−
n∑

i=1

p2i (1)

We then compute the normalized total reduction of the Gini impurity values as the Gini Importance of the feature. The higher
the Gini Importance value, the more important the feature. We selected the top 5 features for classification.

Since the width classification is multi-class, we employ the one-vs-all classification strategy. Specifically, we use three SVMs
with SGD optimization to classify 32-chns images against the rest, 64-chns images against the rest, and 128-chns images against
the rest. We fed the 5 selected features into the SVMs. Each SVM outputs a binary prediction indicating whether or not the
input belongs to the specific width choice. We repeat 10 times of the 5-fold cross-validation to rule out the contingency of the
training-testing set partition.

E.3 Overview of Our Dataset

We re-classify the images from the popular Set9 [3], Set12 [9] and CBSD68 [6] datasets into three width choices {32, 64, 128},
and show the correlations between the width and the complexity of the image texture by performing the width classification task
as described above. The AUC scores are shown in the main text. As some images may be robust to more than one width choice,
there are two versions of our dataset, one with repeated images and one without.

Fig. 19: Example images from our Texture-DIP dataset. Images from the 1st and 2nd rows correspond to the width choices of
32 and 64, respectively. Images from the 3rd row correspond to the width choice of 128 and are considered to be fine-grained.
The images are originally from Set9 [3], Set12 [9] and CBSD68 [6].

F More Qualitative Results



Fig. 20: Qualitative results for ’Baboon’ (an extremely fine-grained image where current methods typically fall short) from Set9
[3] dataset.
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