
Supplementary Material
Towards Unsupervised Domain Generalization for Face Anti-Spoofing

Yuchen Liu1†, Yabo Chen2†, Mengran Gou3, Chun-Ting Huang3, Yaoming Wang1,
Wenrui Dai2*, and Hongkai Xiong1

1Department of Electronic Engineering, Shanghai Jiao Tong University, China
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

{liuyuchen6666, chenyabo, wang yaoming, daiwenrui, xionghongkai}@sjtu.edu.cn
3Qualcomm AI Research {mgou, chunting}@qti.qualcomm.com

A. Proof of the Proposition
A.1 Proof of Proposition 1
Proposition 1. Representation Z learned by minimizing the
vanilla cosine similarity loss maximizes the mutual infor-
mation I(Z;X+), where X+ is augmented positive sample.

Proof. The mutual information I(Z;X+) is decomposed
as
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The first term EX+ [H (Z|X+)] measures the uncertainty
of Z|X+, which is minimized when Z can be completely
determined by X+. The second term H(Z) measures the
uncertainty of Z itself and it is minimized when outcomes
of Z are equally likely.

Then, we firstly show Z can be completely determined
by X+ when the cosine similarity loss achieves the mini-
mum. Based on the Cauchy-Schwarz inequality, we have
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The equality holds when p̃ = z̃+ and p̃+ = z̃ for all x, x+

from the augmentations of the same image. For any aug-
mentations x+

1 , x
+
2 from the same image x, we have:
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where F = g(f(·)) and G = q(g(f(·))). Note that
Eq. (S-3) is equivalent to perfect alignment [11], which is
a common assumption in analyzing the behavior of con-
trastive learning methods. We can find F (x+

1 ) = F (x+
2 )

for any images x+
1 , x

+
2 from the same image x. The result

can be extended to the general case: F (X+
1 ) = F (X+

2 )
for any (X+

1 , X) ∼ P (X+, X), (X+
2 , X) ∼ P (X+, X)

with the same image X . Thus Z can be determined by
X+ with the equation Z = F (X+), which minimizes
EX+ [H (Z|X+)].

When p(Z = cy|X) = 1
|Y| , where Y denotes the to-

tal number of classes (Y=2 in our FAS case), the entropy
H(Z) is maximized. With the asymmetric architecture
and parameter updates, we assume the collapsed solutions
are avoided. By this assumption, the model learns differ-
ent clusters cy for different representations with different
labels. Thus, for a class-balanced dataset, the outcomes
of Z are equally likely and it maximizes the second term
H(Z). Totally, the learned representations by minimizing
the vanilla cosine similarity loss maximizes the mutual in-
formation I (Z;X+).
A.2 Proof of Proposition 2
Proposition 2. Representation Z learned by minimizing
Eq. (1) and (3) minimizes the mutual information I(Z;B),
where B is the variable indicating the identity.

Proof. Eq. (1) can mitigate the identity-biased information
within one identity. When Eq. (1) achieves the minimum,
based on the Cauchy-Schwarz inequality, we have
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= EX,X+ [−p̃i · z̃+ − p̃i+ · z̃]
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The equality holds when p̃i = z̃+ and p̃i+ = z̃ for all i ∈
{1, .., Cn

m} and x+ is from the augmentations of the same



image. Thus, we have:
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By merging the local patch embeddings by averaging, p̃i

contains little identity-related information while retaining
the live/spoof-related information, i.e., I(P ;B) → 0. Since
P = Z in Eq. (S-5), we have I(Z;B) → 0.

Eq. (3) can further migigate the identity-biasd informa-
tion across different identities. Note that the positive sam-
ple is the in-domain nearest neigbhors of X in Eq. (3) as
X+ = Nin(X). When Eq. (3) achieves the minimum,
based on the Cauchy-Schwarz inequality, we have
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= EX,X+ [−p̃i · z̃+ − p̃i+ · z̃]
≥ EX,X+ [−||p̃i||2 · ||z̃+||2 − ||p̃i+||2 · ||z̃||2] = −2

The equality holds when p̃i = z̃+ and p̃i+ = z̃ for all i ∈
{1, .., Cn

m} and x+ is from the same class with different
identities as x. Thus, we have:
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For one thing, by averaging the local embeddings, p̃i

contains little identity-related information, i.e., I(P ;B) →
0. Since P = Z in Eq. (S-7), we have I(Z;B) → 0.

For another, since x and x+ are from the different iden-
tities, they contain different identity-related information. If
I(Z;B) > 0, we also have I(P ;B) > 0. Due to the dif-
ferent identity-related information, we have P ̸= Z, which
fails to match Eq. (S-7). Thus, we have I(Z;B) → 0.

A.3 Proof of Proposition 3
Proposition 3. Representation Z learned by minimizing Eq.
(4) minimizes the mutual information I(Z;D), where D is
the variable indicating the domain.

Proof. Note that the positive sample is the cross-domain
nearest neigbhors of X in Eq. (4) as X+ = Ncr(X).
When Eq. (4) achieves the minimum, based on the Cauchy-
Schwarz inequality, we have
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= EX,X+ [−p̃i · z̃+ − p̃i+ · z̃]
≥ EX,X+ [−||p̃i||2 · ||z̃+||2 − ||p̃i+||2 · ||z̃||2] = −2

The equality holds when p̃i = z̃+ and p̃i+ = z̃ for all i ∈
{1, .., Cn

m} and x+ is from the same class with different
domains as x. Thus, we have:
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Since x and x+ are from the different domains, they con-
tain different domain-related information. If I(Z;D) > 0,
we also have I(P ;D) > 0. Due to the different domain-
related information, we have P ̸= Z, which fails to match
Eq. (S-9). Thus, we have I(Z;D) → 0.

B. Extensive Experiments
B.1 Experiments on Few Labeled Spoof Faces

Since labeled spoof faces are more hard to access in prac-
tical applications, we conduct experiments with few labeled
spoof faces. Specifically, we unsupervised pretrain on all
the faces of three domains among O, C, M and I. Then, we
finetune the pretrained model with full labeled live data and
few labeled spoof data, i.e., ranging from 5% to 50%, which
is more relevant to the practical scenarios, since labeled
spoof faces are more costly to obtain. As shown in Table S-
1, given 50% labeled spoof data, our UDG-FAS achieves
17.88% AUC gain compared with Random Init. For 20% la-
beled spoof data, we outperforms ImageNet Init by 12.30%
HTER reduction. Besides, with 10% labeled spoof data, our
UDG-FAS reduces HTER by 7.74% and increases AUC by
6.96% in comparison to SimSiam. Moreover, with only 5%
labeled spoof data (i.e., only spoof faces of 2 subjects for
each domain), our UDG-FAS achieves 13.62% HTER for
I&C&M to O, which is without much performance degra-
dation compared with using full labeled spoof data. Finally,
Table S-2 shows, when combined with SSDG, our method
yields improved performance by finetuning with few (10%
and 50%) spoof data, despite the performance gain reducing
with fewer spoof data due to imbalanced classification.

B.2 Unsupervised Training with No Spoof Faces

Considering that for real-world application scenarios in
FAS, spoof faces are expensive to collect and usually scarce
and unavailable. Comparably, we can collect very large
amounts of live faces, which are easily obtained and cheap.
Thus, we study a more challenging and practical scenarios
to investigate that whether unsupervised pretraining only on
live faces can help to improve the performance. Specifi-
cally, we only pretrain on all the live faces of three domains
among O, C, M and I. Then, we finetune the pretrained
model with full labeled live and spoof data, and test on the
remaining unseen target domain.

Table S-3 shows that even with only live faces for unsu-
pervised pretraining, our UDG-FAS outperforms ImageNet
Init by a considerable margin, e.g., 7.87% AUC gain on av-
erage. Thus, even using easily and cheaply collected live
faces, our UDG-FAS can provide a promising initializa-
tion for FAS models. Besides, existing contrastive learn-
ing methods cannot achieve satisfactory performance with
only live faces for pretraining, e.g., SimSiam suffers 0.81%
AUC degradation on average compared with ImageNet Init.



Label Fraction 100% Live + 50% Spoof Label Fraction 100% Live+ 20% Spoof

Methods
O&C&I to M O&M&I to C O&C&M to I I&C&M to O O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC

Random Init 14.05 92.47 34.78 69.27 26.43 74.05 31.04 75.18 14.29 91.56 34.89 71.29 29.86 73.31 33.61 71.07
ImageNet Init 18.33 87.34 22.56 87.15 23.64 77.14 22.62 85.02 19.76 90.74 27.33 81.86 26.43 74.25 24.86 82.65
MoCo V2 [4] 14.29 92.63 18.67 86.42 20.07 88.56 28.06 79.47 15.71 92.13 26.11 81.33 25.71 76.41 29.76 76.09

SimCLR V2 [3] 13.10 90.66 18.00 88.68 19.21 91.60 27.62 79.39 14.52 91.59 25.33 82.47 24.29 78.22 29.03 78.74
BYOL [8] 14.52 88.17 22.67 84.37 16.43 90.21 23.47 85.18 15.71 89.98 22.67 84.26 20.07 80.93 24.54 84.69

Simsiam [5] 12.86 93.60 18.56 91.85 17.14 89.98 19.84 87.76 13.10 92.78 20.78 88.03 19.14 85.46 21.04 86.07
Ours 9.76 96.40 13.89 94.14 8.71 96.69 12.18 95.26 11.43 94.86 14.67 93.25 10.71 95.18 12.37 94.24

Label Fraction 100% Live + 10% Spoof Label Fraction 100% Live + 5% Spoof

Methods
O&C&I to M O&M&I to C O&C&M to I I&C&M to O O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC

Random Init 16.91 92.20 35.33 70.17 31.50 69.15 35.50 67.71 17.14 88.59 35.89 71.63 32.86 70.58 33.75 71.04
ImageNet Init 21.43 87.22 26.67 82.47 27.79 72.87 26.46 81.03 20.95 84.93 27.33 80.90 29.28 70.12 28.63 78.86
MoCo V2 [4] 17.38 91.82 28.56 80.25 26.43 73.52 34.55 70.43 18.57 90.06 34.33 74.09 26.43 72.07 35.61 68.82

SimCLR V2 [3] 16.91 92.09 27.89 79.85 25.71 72.73 32.59 73.08 17.38 89.45 33.89 72.12 25.64 75.07 34.29 71.09
BYOL [8] 16.91 88.62 23.33 83.57 19.28 84.27 24.08 84.71 18.81 86.85 27.44 79.12 21.50 82.49 27.92 79.64

Simsiam [5] 14.05 93.32 21.44 85.19 19.44 89.78 25.69 81.83 15.95 92.40 25.33 81.75 21.14 77.58 26.28 81.59
Ours 10.47 96.08 14.89 91.96 12.00 95.48 12.29 94.45 10.00 94.79 16.44 91.48 15.00 93.49 13.62 92.77

Table S-1: Results on UDG-Protocol-1 with full labeled live data and partial labeled spoof data ranging from 5% to 50%.
We split the training set by the subject ID.

O&C&I to MO&M&I to CO&C&M to II&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

Ours(L+50%S) 9.76 96.40 13.89 94.14 8.71 96.69 12.18 95.26
+SSDG 8.57 97.05 12.56 94.57 7.85 96.93 11.53 95.71
Ours(L+10%S) 10.47 96.08 14.89 91.96 12.00 95.48 12.29 94.45
+SSDG 9.76 96.44 14.00 92.51 11.43 95.73 11.78 94.49

Table S-2: Combined with SSDG on UDG-Protocol-1 us-
ing full labeled live (L) and few-shot labeled spoof (S) data
for finetuning.

Methods
O&C&I to MO&M&I to CO&C&M to II&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

Random Init 12.62 92.15 35.33 68.25 25.64 77.09 32.20 73.07
ImageNet Init 11.43 93.99 16.44 91.25 23.57 77.25 22.31 85.65

MocoV2 15.95 91.39 20.67 85.93 18.57 85.89 28.89 78.16
SimCLRV2 15.71 90.26 20.11 86.43 18.50 91.35 26.94 80.24

BYOL 16.91 88.76 23.78 86.68 17.79 91.69 26.11 81.63
SimSiam 15.95 90.67 23.33 84.48 17.86 89.99 26.35 79.77

Ours 8.33 96.92 12.67 94.35 5.64 98.50 17.54 89.83
Ours+SSDG 7.14 97.31 11.33 94.67 5.43 98.79 15.96 91.52

Table S-3: Results on unsupervised pretraining using only
live faces.
Comparably, our UDG-FAS improves SimSiam by a large
margin, e.g. 9.83% HTER reduction on average. Though
unsupervised pretraining without spoof faces, our UDG-
FAS forces the model to learn an identity-irrelevant and
domain-irrelevant representation space, facilitating the gen-
eralization capability when finetuned with full labeled data.

B.3 Experiments with Various Domain Information
Following previous work [9, 12], we take each dataset

as a domain for a fair comparison. However, dataset like

- κ = 2 κ = 3 κ = 4 C subdivision
UDG-FAS 12.18 13.09 12.43 12.71 11.83

Table S-4: HTER (%) on I&C&M to O for various kinds of
domain separation.

5% labels 10% labels 20% labels 50% labels
SSDG-R [9] 24.98 23.61 20.43 17.54

SSAN-R [12] 23.04 21.25 17.10 15.12
UDG-FAS 15.14 15.29 12.83 12.27

Table S-5: HTER (%) on I&C&M to O with partial labeled
live and spoof data, ranging from 5% to 50%.

CASIA uses several capture devices and very different en-
vironments to collect the data, which can be further divided
into fine-grained sub-domains. In specific, we further divide
CASIA into three sub-domains based on capture devices.
C subdivision shows a slight gain in Table S-4. Thus, do-
main information only serves to separate the support set of
NN, and our UDG-FAS is somewhat tolerable to the noise.
Moreover, our method can work flexibly even without do-
main information. We use pretrained ResNet to extract fea-
tures for K-means clustering to obtain κ domains, and Ta-
ble S-4 shows UDG-FAS works well with various κ.

B.4 Evaluation with Other FAS SOTA Methods
We perform the evaluation on limited labeled data with

SOTA FAS methods, i.e., SSDG [9] and SSAN [12]. Ta-
ble S-5 shows that our method consistently outperforms
SOTA FAS methods under various portions of labeled
data ranging from 5% to 50%, especially with fewer data.
For example, our UDG-FAS outperforms SSDG by 5.27%



HTER drop with 50% labels, and the gap further increases
to 9.84% HTER drop with 5% labels.

B.5 Discussion on Hyperparameters Setting
The choice of the split number m controls the patch size.

Fig. 5 shows m=2 outperforms m=3, since a small patch
size (m=3) may fragment spoofing cues and degrade the
performance. Besides, n determines the number of merged
patches. Directly averaging all features of patches (n=m2)
produces only one (Cm2

m2 ) positive pair. While averaging n
local features from subsets of m2 patches generates Cn

m2

positive pairs, which significantly provides more supervi-
sion signals. Besides, averaging all local features would
weaken the power of some discriminative local features.
Fig. 5 shows C2

4 is better than C4
4 . There are many false

matches at random initialization. Thus, at the start of train-
ing, we do not use searched neighbors as positive samples
to compute the loss (Eq.(5) in the main text). After training
T1=30 and T2=60 epochs for warm-up, we employ reliable
in-domain and cross-domain NN as positives, respectively.

C. More Visualization Analysis
C.1 Searched Nearest Neighbors

In Fig. S-2, we show the nearest neighbors searched us-
ing features encoded by our self-supervised model, which is
unsupervised trained on three datasets among O, C, M and I.
Cross-domain NNs picked by our method are from the same
live/spoof class, where the spoof ones are even from the
same fine grained attack types, e.g., video and print attacks.
Besides, the searched in-domain NNs are also accurate with
the same fine grained attack types, and are from quite dif-
ferent identities (e.g., different ethnics and genders).

C.2 Visualization of Feature Space
Fig. S-1 shows the t-sne visualization of our unsuper-

vised learned features. As shown in Fig. S-1 (a), samples of
each class (live/spoof) are separable in our learned feature
space, indicating the learning of live/spoof-related features,
though not perfect since our model is unsupervised trained
without labels. Fig. S-1 (b) and (c) show that samples from
different domains and different identities are closely entan-
gled and inseparable in our learned feature space, indicat-
ing the learning of domain-irrelevant and identity-irrelevant
representation space. Thus, our unsupervised learned fea-
tures can effectively mitigate domain-biased information
and identity-biased information.

D. Main Algorithms
The unsupervised training algorithm of our UDG-FAS

with unlabeled data collected under various domains is elab-
orated in Algorithm 1. After unsupervised training, we fine-
tune the model with few labeled live and spoof data, as de-
scribed in Algorithm 2.

Figure S-1: T-sne visualization of unsupervised features
learned by our UDG-FAS on Replay, CASIA, OULU. Dif-
ferent colors for (a) different classes (live/spoof), (b) do-
mains and (c) identities, respectively. We randomly se-
lect 4 identities in OULU for visualization. Our UDG-FAS
could learn live/spoof-related features to separate the fea-
ture space well. While samples from different domains and
different identities are closely entangled, indicating the ef-
fectiveness of mitigating domain bias and identity bias.

Symbol Meaning
xi, yi, di image/category label/domain label
B, D random variables indicating identity/domain
m, n number of split/merged patches
ep1 encoded local embeddings
vi1 merged local embeddings
pi1 vectors of merged local embeddings
z embedding for the input x

f, g, q encoder, projector and predictor
Qin

z , Qcr
z in-domain/cross domain support set for z

N(z,Q) nearest neighbor of z in Q
zqinnn , zqcrnn in-domain/cross domain nearest neighbor of z
N(z,Qin

z ) in-domain nearest neighbor of z
N(z,Qcr

z ) cross domain nearest neighbor of z

Table S-6: The meaning of the main symbols defined in the
paper.

E. The Symbol Table
We add a symbol table as shown in Table S-6 to clarify

the meaning of the math symbols used in the paper.

F. Datasets and Protocols
F.1 Datasets

Experiments are conducted on five publicly available
datasets: Idiap Replay-Attack [6] (denoted as I), OULU-
NPU [2] (denoted as O), CASIA-MFSD [15] (denoted
as C), MSU-MFSD [13] (denoted as M) and CelebA-
Spoof [14] (denoted as CA). Basic information of these
datasets is summarized in Table S-7.
• Idiap Replay-Attack (abbr. I) captures all live and spoof

faces from 50 clients under two different lighting condi-
tions in 1,200 videos. Five attack types consist of four
kinds of replayed faces and one kind of printed face.



((a)) Cross-domain Nearest Neighbors ((b)) In-domain Nearest Neighbors

Figure S-2: Cross-domain and in-domain nearest neighbors searched by our UDG-FAS method.



Datasets Subjects Data Sensors Spoof Types

Idiap Replay-Attack (I) [6] 50 1,200 videos 2 1 Print, 2 Video-replay
OULU-NPU (O) [2] 55 4,950 videos 6 2 Print, 2 Video-replay
CASIA-MFSD (C) [15] 50 600 videos 3 2 Print, 1 Video-replay
MSU-MFSD (M) [13] 35 280 videos 2 1 Print, 2 Video-replay
3DMAD (D) [7] 17 255 videos 5 1 3D Mask
HKBU-MARs (H) [10] 12 1008 videos 6 2 3D Mask
CelebA-Spoof (CA) [14] 10177 625,537 images >10 3 Print, 3 Replay, 3 Paper Cut, 1 3D Mask

Table S-7: A summary of the FAS datasets used in our experiments.

Figure S-3: Sample frames from CASIA-MFSD [15], Idiap Replay-Attack [6], MSU-MFSD [13], and OULU-NPU [2]
datasets. The figures with red border represent the real faces, while the ones with green border represent the video replay
attacks. From these examples, it can be seen that large cross-dataset variations due to the differences on materials, illumina-
tion, background, resolution and so on, cause significant domain shift among these datasets.

• OULU-NPU (abbr. O) is a high-resolution dataset with
3,960 spoof face videos and 990 live face videos, con-
taining two kinds of printed spoof faces and two kinds
of replayed spoof faces captured under six cameras and
three sessions.

• CASIA-MFSD (abbr. C) consists of 50 subjects and
each subject has 12 videos. Three attack types (printed
photo attack, cut photo attack, and video attack) are used
to create spoof faces, and each face image is recorded
with three kinds of imaging qualities.

• MSU-MFSD (abbr. M) consists of totally 280 videos
for 35 subjects under two different cameras. Three spoof
types include two kinds of replayed faces and one kind
of printed face.

• 3DMAD (abbr. D) is collected in 3 different sessions for
all subjects and for each session 5 videos of 300 frames
are captured, which contain high-fidelity 3D mask at-
tacks.

• HKBU-MARs (abbr. H) contains 1008 videos from 12
subjects and masks. 2 types of 3D masks are included
with different illumination conditions.

• CelebA-Spoof (abbr. CA) is the current largest scale
FAS dataset with rich and diverse annotations, which
comprises 625,537 pictures of 10,177 subjects covering
four spoofing types (i.e., print, paper-cut, replay, and 3D
mask) captured under eight scenes.

F.2 Protocols
UDG-Protocol-1: We unsupervisedly pretrain the model

using unlabeled data on three domains of I, O, C and M,

and then finetune the unsupervised trained model with the
labeled data, the proportion of which varies from 5% to
100%. Finally, the model is evaluated on the remaining
unseen target domain. In this protocol, there is almost no
shortage of domain information compared to the standard
DG protocol, but the amount of labeled data is relatively
small. Besides, we deliberately evaluate the performance
of models with few labeled spoof data (from 5% to 50%),
which is more relevant to the practical situation (as shown
in Table S-1). The training data is split by the subject ID,
and we select part of labeled data for finetuning. For exam-
ple, Label fraction 5% denotes that 5% of the live and spoof
data in the order of subject ID is labeled. Label fraction
Spoof 5% denotes that 100% of the live data and 5% of the
spoof data in the order of subject ID is labeled. To make a
further analysis, we draw ROC curves of UDG-Protocol-1
with full labeled live and spoof data for finetuning, as shown
in Fig. S-4.

UDG-Protocol-2: The model is unsupervised pretrained
using unlabeled data from three domains of I, O, C and
M. Without any labeled data for supervised finetuning, we
perform kNN on the model to evaluate the unsupervised
pre-trained features more directly. Note that we conduct
kNN (k=10) with 10% labeled data for evaluation and test.
This protocol is proposed to evaluate the performance un-
der more challenging scenarios without any labeled data for
training.

UDG-Protocol-3: Besides small traditional FAS datasets
(I, O, C, M), we exploit more large-scale unlabeled data for
pretraining to demonstrate the advantages of our method. In



((a)) O&C&I to M ((b)) O&M&I to C ((c)) O&C&M to I ((d)) I&C&M to O

Figure S-4: ROC curves of our proposed UDG-FAS and state-of-the-art face anti-spoofing methods on four testing scenarios.

Algorithm 1 Unsupervised Domain Generalization for FAS

Input: Number of pretraining epochs NT , encoder net-
work f , projector g, predictor q, data augmentation T
and loss balanced parameters λ1 and λ2.

Output: Encoder network f , and throw away g, q.
1: for epoch = 1 to NT do
2: Given a sampled minibatch x, draw two augmenta-

tion functions t1, t2 ∼ T , and generate two aug-
mented views as x1 = t1(x), x2 = t2(x).

3: Input x1, x2 alternatively to Split-Rotation-Merge
module and obtain merged local vectors {pi1},{pi2}.

4: Input x1, x2 directly to the encoder f and projector
g to obtain the global vectors as z1, z2.

5: Calculate cosine similarity loss LSRM via Eq. (1).
6: With torch.no grad():
7: Input x to the encoder and projector to obtain z.
8: Gather in-domain global vectors as Qin

z .
9: Gather cross-domain global vectors as Qcr

z .
10: Input split x to encoder and projector to build v.
11: Gather cross-domain local vectors as Qcr

v .
12: Search in-domain nearest neighbors as idqinnn .
13: Normalize Qcr

z ,Qcr
v to the Gaussian distribution.

14: Search cross-domain nearest neighbors as idqcrnn .
15: Obtain the in-domain nearest neighbors as z1[id

qin
nn ]

and z2[id
qin
nn ], respectively. Obtain the cross-domain

nearest neighbors as z1[idqcrnn ] and z2[id
qcr
nn ].

16: Using in-domain nearest neighbors as positives for
computing cosine similarity loss LIDNN via Eq. (3).

17: Using cross-domain nearest neighbors as positives
for computing the cosine similarity loss LCRNN via
Eq. (4).

18: Obtain the overall loss L via Equation (5).
19: Update f , g and q via L by gradient descent.
20: end for
21: Return encoder network f , and throw away g, q.

specific, we include the current largest CelebA-Spoof (CA)

Algorithm 2 Finetuning for UDG-FAS

Input: Labeled source domain dataset DS = {xS ,yS},
number of training epochs NS , the pre-trained feature
encoder f and a randomly initialized one-layer linear
classifier hs.

Output: Trained model h ◦ f .
1: for epoch = 1 to NS do
2: Input a sampled minibatch xS .
3: Obtain the model output ỹS = fs(xS).
4: Calculate the loss Lce = BCE(ỹS ,yS).
5: Update the parameters of fs(·) via Lce.
6: end for
7: Return Trained model h ◦ f .

dataset as an additional unlabeled source dataset with three
domains of I, O, C, M for unsupervised pretraining. To save
computational overhead, we randomly sample a subset of
100k/200k images. Moreover, we extract the real faces of
CA as additional source data for evaluation, which are all
web-crawled. After unsupervised pretraining, full labeled
data of three domains are used to finetune the model for
evaluation. This protocol is proposed to evaluate the effec-
tiveness of our method for using large-scale web-crawled
face data to enhance the pre-trained features and improve
the low-data regime of the FAS community.

UDG-Protocol-4: Two datasets among I, O, C and M
are set as one group, i.e., [O, M] and [C, I] are set as two
groups. The model is unsuperivsed pretrained on one group
using unlabeled data, finetuned using the labeled data, and
then tested on the unseen target data in the other group.
This protocol evaluates the efficiency and generalizability
of models with limited source domains. In other words, this
protocol can validate the performance of models with lim-
ited training data.

UDG-Protocol-5: In this UDG based attack type gener-
alization protocol, following the ‘leave one attack type out’
data usage in [1], we pretrain on two domains of I, C and M



with live data and partial attack type data using unlabeled
data, finetune with the labeled data. Subsequently, the sam-
ples with the remaining one attack type are set as the target
set for test. This protocol measures the generalization of the
model on both unseen domain and 2D attack types. For ex-
ample, samples with ‘Live’ and 2 attack types (‘Video’ and
‘Digital Photo’ in Replay, ’HR Video’ and ’Mobile Video’
in MSU) are set as labeled training set, while samples with
another one attack type (‘Warped Photo’) in CASIA are set
as unlabeled target testing set.

UDG-Protocol-6: We evaluate the generalization on un-
seen 3D mask attack based on UDG in this protocol. Fol-
lowing the ’leave on attack type out’ testing, we pretrained
on unlabeled data with 2D attack types, finetune using the
labeled 2D attack data, and then test on the unseen 3D mask
attach types data. In specific, we pretrain the model using
unlabeled data on O, C, I and M, finetune using the labeled
data, and then test on 3D mask dataset D and H. Besides, we
also pretrain on O, C and M, and test on the large-scale CA
dataset, which also contain unseen 3D mask attack types.

G. Implementation Details
For unsupervised training, we adopt ResNet-18 as the

backbone. Following SimSiam [5], we add a projector with
three MLP layers and a predictor with two MLP layers,
which are discarded after unsupervised pretraining. We
adopt SDG optimizer with base lr = 0.03 and a cosine de-
cay schedule for 100 epochs unsupervised pretraining. For
O, C, I and M, the scale of data is too small, so we pretrained
the model for 100 epochs on a subset of 50,000 images
from CelebA-Spoof. For our SRM module, we set m=2
and n=2. For unsupervised pretraining, we leverage ran-
dom crop, random light/contrast, random erasing and ran-
dom horizontal flip as the data augmentation to augment the
input image. The hyperparameter is T1 = 30 and T2 = 60.
For finetuning, we initialize a ResNet-18 encoder with un-
supervised pretrained weight, and randomly initialize a one-
layer linear classifier. The model is trained by SGD opti-
mizer with lr = 0.001 for 1000 iterations. Following previ-
ous works [9, 12] for a fair comparison, we select the best
model based on the test set.

H. Limitations and Future Work
While our work shows promising results, there are still

some limitations.
i) Considering the cross-domain NN accuracy, we man-

age to get 87.9% in 100 epochs. This suggests that there
is still a possibility of improving performance with a bet-
ter NN picking strategy, although it might be hard to design
one that works in a purely unsupervised way;

ii) Domain labels are assumed to be accessible in our
method to divide in-domain support set and cross-domain
set for NN search. For a more practical scenario, we may

obtain a mixture domain dataset, where the domain label is
unknown. We can leverage more advanced unsupervised
clustering methods to construct domain partition, which
could be further explored in future work;

iii) Our current approach is built on convolutional neural
networks for a fair comparison with existing works. A di-
rect extension could be employing our approach on top of
more powerful vision transformers.

iv) Experiments with large-scale CA data have demon-
strated the potential of our method to use large-scale web-
crawled face data to enhance the pre-trained features and
improve the low-data regime of the FAS community. We
would validate on other large-scale web-crawled face data
later.
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