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A. Extended Experiments
A.1. Traking on BDD100K-MOT

To evaluate the generalization of our method, we conduct
extended experiments on the BDD100K-MOT [8] dataset.
BDD100K-MOT is the largest driving video dataset with
2000 videos in total, needing to track objects of 8 classes.
The large camera motion, low frame rate, and fast object
moving make it a challenging benchmark in the MOT com-
munity. We have recently noticed that ByteTrack [9], the
most competitive unsupervised tracker against ours, has
achieved the SOTA performance on BDD100K-MOT. For
a fair comparison, on each evaluation split, we take the
same YOLOX [3] detector and individually perform track-
ing with ByteTrack and our U2MOT1. The results shown
in Tab. A1 demonstrate our proposed U2MOT consistently
outperforms ByteTrack by a large margin, especially on
class-averaged terms of mHOTA, mMOTA, and mIDF1,
and ID switches. It indicates our U2MOT learned intra-
class discriminable feature embedding on all classes.

Specifically, ByteTrack indicates tracking without em-
bedding learning can also bring high performance, while
this paper argues the task-specific ReID embedding is still
necessary. To handle the multi-class MOT task during infer-
ence, ByteTrack adopts an extra pre-trained UniTrack [7]
model as the unsupervised ReID embedding extractor [9].
For U2MOT , we add a ReID head, which is trained by our
unsupervised framework, on top of the detector. According
to Tab. A1, we argue that though ByteTrack has achieved

1Since ByteTrack’s pre-trained model on BDD100K is not released, we
re-train the detector according to their codebase and paper details.

advanced tracking performance with the motion model only
(i.e., the Kalman filter), learning task-specific ReID embed-
ding is still necessary for MOT tasks, especially in multi-
class situations.

A.2. Discussion on the degradation of MOTA

Tab.1 in our manuscript shows our U2MOT causes a
drop of MOTA on MOT17 and MOT20 datasets, compared
to ByteTrack [9]. Here we provide more discussions and
experiments to figure out this problem.

MOTA is computed as: MOTA = 1 − FP+FN+IDS
GT . Com-

pared to ByteTrack [9], for example, though we get a bet-
ter association-aware ID Switch (IDS) (decreased by 700),
the detection-aware False Positive (FP) and False Negative
(FN) are worse (increased by 2,300 and 2,500 respectively).
Thus the MOTA earns a drop.

A possible reason is that vanilla ByteTrack contains a
detector only, while our method adds an extra ReID head.
The conflict between the detection head (pulling all tar-
gets together) and the ReID head (pushing different targets
away) may damage detection performance and ultimately
the MOTA [9].

We adopt a naive trick to alleviate this problem: train the
detector first, then keep it frozen and train the ReID head.
By doing so, the MOTA is increased from 79.7% to 80.2%,
which is comparable to 80.3% of ByteTrack. Whereas the
HOTA decreased from 64.2% to 63.9%, but still higher than
63.1% of ByteTrack.

In summary, the competition between detection and re-
identification tasks deserves be further explorations.

split Tracker mHOTA↑ mMOTA↑ mIDF1↑ HOTA↑ MOTA↑ IDF1↑ IDS↓ FPS↑

val
ByteTrack [9] 38.9 33.1 44.2 57.9 61.3 65.8 29083 11.8
U2MOT (Ours) 40.7 35.5 49.1 58.7 62.9 68.9 16191 19.6

test
ByteTrack [9] 39.7 28.1 45.9 57.6 61.4 66.1 51979 11.8
U2MOT (Ours) 42.2 30.7 51.2 58.3 63.0 69.2 29985 19.6

Table A1: Evaluation on BDD100K. On each split, results of ByteTrack and U2MOT are obtained from the SAME detector.

https://github.com/ifzhang/ByteTrack


B. Uncertainty Derivation
In multi-object tracking, let’s consider the association

for current object oti with previous M t-1 objects/trajectories
({ot-11 , ot-12 , · · · , ot-1Mt-1}). After Hungarian algorithm, let
ci,j denote the similarity of associated pair (oti ∼ ot-1j ),
and ci,j2 be the highest similarity against the left ob-
jects other than ot-1j . For a good tracker, ci,j should
be close to 1, and ci,j2 is 0. In the whole data space,
given D = {c1i,j , c2i,j , · · · , cDi,j ; c1i,j2 , c

2
i,j2

, · · · , cDi,j2}, let
{p1, p2, · · · , pD ; n1, n2, · · · , nD} be the labels. Accord-
ing to the Multivariate Bernoulli Distribution, the Probabil-
ity Mass Function is formulated as:
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The log-likelihood is expressed as:
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Considering pk = 1 and nk = 0, it can be simplified as:

logP =

D∑
k=1

log
(
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)
+ log

(
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)
(A3)

To maximize the log-likelihood, it is equivalent to mini-
mize the negative log-likelihood:

L =

D∑
k=1

− log
(
cki,j

)
− log

(
1− cki,j2

)
(A4)

We thus propose to estimate the association risk by:

σi,j = − log (ci,j)− log (1− ci,j2) (A5)

It is defined as Eq. (4) in our manuscript. According to
common sense, when the similarity of associated (oti∼ot-1j )
is relatively low (i.e., ci,j < m1), or there also exists other
similar objects (i.e., ci,j2 > ci,j − m2), the association is
uncertain. Furthermore, we have:

− log (ci,j) >− log (m1)

− log (1− ci,j2) >− log (1 +m2 − ci,j2)
(A6)

Combining with Eq. (A6), we propose to evaluate the
lower bound of Eq. (A5) as:

(a) Energy-based verification. (b) Verification comparison.

Figure A1: Statistics of energy-based risk estimation.

− log (ci,j)− log (1− ci,j2) = σi,j

> − logm1 − log (1 +m2 − ci,j) ≜ γi,j
(A7)

The margin-based adaptive threshold γi,j is defined as
Eq. (5) in the manuscript. When the risk σi,j is higher
than the threshold γi,j , the assignment (oti∼ot-1j ) should be
considered as uncertain. The final quantified uncertainty
estimation is formulated by δi,j = σi,j − γi,j (Eq. (6)).

C. Uncertainty Manifestation
Other than the proposed estimation of association risk in

Eq. (A5), we also explored other manifestations, e.g., the
energy model [5]. As the association process can be viewed
as a multi-category classification task, the energy score can
be expressed as:

Ei = − log

Mt-1∑
j=1

exp (ci,j) (A8)

However, as shown in Fig. A1a, the energy score is
unable to distinguish the wrong and correct associations
by a constant threshold [5]. Quantitatively, energy model
failed to concurrently filter the wrong association as uncer-
tain ones and preserve the correct association as certain, as
shown in Fig. A1b.

Compared to the energy model, our proposed uncertain
metric (risk estimation with adaptive threshold) is more ef-
fective and specific for tracking task.

D. Parameter Stability
As our method introduces several hyper-parameters, in-

cluding m1/m2 in Eq.(3) and β/K in Eq.(7), here we pro-
vide further validation on the parameter stability on differ-
ent datasets and base detectors.

In particular, we tested the parameter stability with Cen-
terNet as the base detector on MOT20 validation set. Ac-
cording to Fig. A2, the final performance is insensitive to
m1 and m2, but relatively sensitive to β and K. It implies
our uncertainty measure (involving m1 and m2) is stable,



Figure A2: Evaluation on parameter stability with Cen-
terNet on MOT20.

though the rectification stage (involving β and K) depends
on practical factors like crowd occlusion.

E. Hierarchical Sampling in TGA

To further leverage the uncertainty to improve the inter-
frame consistency via the proposed tracklet-guided aug-
mentation, a hierarchical sampling mechanism is developed
to select the anchor tracklets and target frames to perform
TGA. To illustrate the hierarchical sampling process more
clearly, we provide a visualization example in Fig. A3.

F. Quantitative strategy-comparison

To better clarify the advantages of our proposed method,
i.e., the Uncertainty-aware Tracklet-Labeling (UTL) mech-
anism and the Tracklet-Guided Augmentation (TGA) strat-
egy, we provide an extra quantitative comparison with rele-
vant approaches.

Specifically, we have compared UTL with the energy-
based [5] uncertainty metric on the MOT17 validation set.
Results shown in Tab. A2 indicate our UTL significantly

Uncertainty Augmantation HOTA↑ IDF1↑ FPS↑

Energy [5] TGA 63.64 74.56 7.4
UTL FD-GAN [2] 64.85 76.43 2.6
UTL TGA 64.90 76.66 7.5

Table A2: Module comparison. ‘FPS’ is training speed.

boosts the performance. It is consistent with the visualiza-
tion in our supplementary materials that such an energy-
based metric is inferior to identifying risky associations.

Besides, our TGA slightly outperforms such GAN-based
adaptive augmentation [2]. And meanwhile, we are 2.5×
faster during training. Our tracklet-guided augmentation
takes into account both efficacy and efficiency.

G. Cross-Validation for Ablation Studies
MOT17 [6] contains 7 videos in the training set in total.

Following the commonly-used ablation protocol [10, 9, 4],
we take the first half images of each video for training, and
the second half for validation in the manuscript. Under that
protocol, the effectiveness of our proposed method is veri-
fied. Here we provide more sufficient experimental results
to validate our U2MOT through another video-separated ab-
lation protocol.

Specifically, we randomly select 4 videos for training
and the other 3 videos for validation. Furthermore, we inde-
pendently run the video-selection for three times for cross-
validation, which are:

• Training: MOT17-02, MOT17-09, MOT17-11, MOT17-13.
Validation: MOT17-04, MOT17-05, MOT17-10.

Figure A3: Visualization of the hierarchical uncertainty-based anchor-sampling mechanism.



Method HOTA↑ MOTA↑ IDF1↑ IDS↓
baseline 56.93 65.79 70.31 237
+LTD 57.10 65.82 70.49 236
+UTL 57.26 65.81 70.81 234
+TGA 57.38 65.79 71.02 234

supervised 57.26 65.82 70.95 234

Table A3: Evaluation of the proposed modules.

m1 m1 HOTA↑ MOTA↑ IDF1↑ IDS↓
− − 57.13 65.78 70.61 237

0.5 0.00 57.30 65.82 70.87 237
0.5 0.02 57.33 65.77 70.99 233
0.5 0.05 57.38 65.79 71.02 234
0.5 0.10 57.32 65.80 70.98 235

0.7 0.00 57.26 65.80 70.77 237
0.7 0.02 57.36 65.80 70.99 233
0.7 0.05 57.36 65.79 70.98 235
0.7 0.10 57.25 65.83 70.81 235

Table A4: Ablation on the uncertainty-metric in UTL.
The “−” indicates UTL is not applied.

• Training: MOT17-02, MOT17-04, MOT17-05, MOT17-10.
Validation: MOT17-09, MOT17-11, MOT17-13.

• Training: MOT17-05, MOT17-09, MOT17-10, MOT17-13.
Validation: MOT17-02, MOT17-04, MOT17-11.

Under each protocol, the ablation studies on the pro-
posed components, uncertainty metric, tracklet-guided aug-
mentation are conducted individually. The overall results
are shown in Tabs. A3 to A6, where the performance
variation are consistent with the ablation protocol in the
manuscript. We can draw the same main conclusions: 1)
our proposed UTL and TGA is effectice; 2) the uncertainty
metric is not relatively sensitive to the hyper-parameters
(i.e., the margins); 3) the hierarchical uncertainty-based
sampling mechanism further improves the augmentation’s
quality; and 4) UTL is a generalized plug-and-play module
that can be integrated into existing methods and consistently
improve the tracking performance. The effectiveness of our
proposed method is further demonstrated.

H. ReID Head Implementation
For reproducibility, we show a simple implementation of the

ReID head in Fig. A4, with which all the results in the manuscript
are obtained. Following prior arts [10, 7], we use the multi-scale
features to boost the appearance embedding, which is sampled at
object’s center in the ReID feature map. Such a lightweight ReID

TGA-src TGA-tgt HOTA↑ MOTA↑ IDF1↑ IDS↓
− − 57.26 65.81 70.81 234

random random 57.25 65.81 70.88 235
uncertain random 57.30 65.77 70.91 233
random uncertain 57.29 65.80 70.95 233

uncertain uncertain 57.38 65.79 71.02 234

Table A5: Ablation on the anchor-selection mechanism
in TGA. The “−” indicates TGA is not applied.

Tracker HOTA↑ MOTA↑ IDF1↑ IDS↓
baseline 57.38 65.79 71.02 234

ByteTrack 56.89 65.68 70.53 241
+UTL 58.06 65.89 72.47 237

FairMOT 55.67 64.62 68.80 672
+UTL 57.17 65.15 70.61 545

DeepSORT 52.08 61.92 63.15 604
+UTL 53.26 62.45 63.94 480

MOTDT 53.84 63.40 66.17 713
+UTL 55.01 63.85 68.04 489

Table A6: Inference boosting. Results are obtained by dif-
ferent association strategies with the SAME model.

head is able to learn objects’ consistent feature over the time pe-
riod.

Figure A4: A simple implementation of the ReID head.
Embedding vector is sampled at object’s center in the ReID
feature map.

I. Uncertainty Visualization
To further demonstrate the effectiveness of our proposed

association-level uncertainty metric, more visualization examples



are provided. According to Fig. A5, the uncertainty metric is ca-
pable to detect the wrong associations under the following circum-
stances:

• Severe object occlusion. As show in Fig. A5a, when an
object is almost entirely occluded by another object, the two
objects have similar appearance embedding as well as similar
motion information, which make the association ambiguous.

• Similar object appearance. As show in Fig. A5b, when two
objects are not occluded, the similar appearance still leads to
ID switches. Especially, the small objects or blurred appear-
ance will increase the embedding ambiguity.

• Irregular camera motion. As show in Fig. A5c, when the
camera is irregularly or swiftly moved, the IoU information
is no more reliable, especially with ambiguous appearance
embeddings.

At the same time, correct associations are preserved as ‘certain’
ones, which demonstrates the robustness of our uncertain metric.

J. Tracking Visualization
As shown in Fig. A6 and Fig. A7, more visualization examples

on MOT17 [6], MOT20 [1], VisDrone-MOT [11], and BDD100K-
MOT [8] datasets are provided to further demonstrate the effec-
tiveness of our proposed unsupervised MOT method.
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(a) Severe object occlusion.

(b) Similar object appearance.

(c) Irregular camera motion.

Figure A5: Typical visualizations for uncertain associations. In each sub-figure, the query (current) frame and its objects
are placed at the first row, and the second row display the key (previous) frame and its objects. The object association results
are presented as arrows.



(a) MOT17-06

(b) MOT17-08

(c) MOT20-04

(d) MOT20-06

(e) uav0000077 00720 v

(f) uav0000201 00000 v

Figure A6: Typical visualizations of our unsupervised multi-object tracking results. In MOT-17 ((a-b)) and MOT-20
((c-d)), different colors represent different identities. In VisDrone-MOT ((e-f)), both identities and categories are presented.



(a) b1c9c847-3bda4659

(b) b1c66a42-6f7d68ca

(c) cabc30fc-eb673c5a

(d) cabc9045-1b8282ba

(e) cabf9f3c-d58a6760

(f) cabf9f3c-d58a6760

Figure A7: Typical visualizations of our unsupervised multi-object tracking results on BDD100K-MOT dataset.
Our U2MOT can handle the challenges in autonomous driving scenes, such as various scenarios and diverse motions.


