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In this file, we supplement additional materials to sup-
port our findings, observations, and experimental results.
Specifically, this file is organized as follows:

• Sec. A provides additional information on the Open-
PCSeg codebase and summarizes the reproduced and
reported performance.

• Sec. B elaborates on additional implementation details
of the proposed methods and the experiments.

• Sec. C supplements additional quantitative results, in-
cluding class-wise IoU scores and PQ scores for our
comparative study and ablation study.

• Sec. D attaches additional qualitative results.

A. Additional Information of OpenPCSeg

The OpenPCSeg codebase supports tasks of LiDAR
semantic segmentation and LiDAR panoptic segmenta-
tion. It includes range-image-based, voxel-based, fusion-
based, point-based and BEV-based algorithms, as well
as recent 3D data augmentation techniques. Range-
image-based methods include SqueezeSeg [44], Squeeze-
SegV2 [45], RangeNet++ [28], FIDNet [57], CENet [5] and
SalsaNext [8]. Voxel-based algorithms have Minkowsk-
iNet [7], Cylinder3D [60], and DS-Net [15]. Fusion-based
algorithms include RPVNet [48] and SPVCNN [39]. Point-
based algorithms contain PointTransformer [56]. BEV-
based algorithms including PolarNet [55], and Panoptic-
PolarNet [58]. We also have three useful data augmentation
algorithms, LaserMix [20], PolarMix [46], Mix3D [29]. A
summary of supported features compared to the existing
codebase is provided in Table A. OpenPCSeg supports more
datasets and more features than other codebases. A detailed
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comparison between the reproduced and reported perfor-
mance of different algorithms is summarized in Table B.
Besides, we provide MinkowskiNet [7] and SPVCNN [38]
variants are shown in Table C. More popular LiDAR seg-
mentation algorithms, such as Panoptic-PHNet [23] and Li-
darMultiNet [52], will be added to this codebase in the fu-
ture. We elaborate on more details of the benchmarked
models, techniques, and datasets as follows.

A.1. Supported LiDAR Segmentation Model

A.1.1 Range View

• SqueezeSeg [44]: a classic 3D segmentor which can
be trained end-to-end, proposed in 2017.

• SqueezeSegV2 [45]: an improvement over Squeeze-
Seg by the Context Aggregation Module (CAM) to
mitigate the impact of dropout noise, proposed in
2018.

• RangeNet++ [28]: a classic and widely used range
view LiDAR semantic segmentation method which
equips with GPU-enabled post-processing, proposed
in 2019.

• SalsaNext [8]: a range-view solution for LiDAR se-
mantic segmentation task which brings a Bayesian
treatment to compute the epistemic and aleatoric un-
certainties for each point, proposed in 2020.

• FIDNet [57]: a 3D segmentor with an improved
post-processing method (NLA) over RangeNet++ and
equips with an FID module for upsampling, proposed
in 2021.

• CENet [5] a powerful range view method embedding
multiple auxiliary segmentation heads for LiDAR seg-
mentation task, proposed in 2022.



Table A: Supported features of existing LiDAR segmentation codebases. “ ✓ ” / “ ✕ ” denotes a supported / not supported
feature. Symbol “△” denotes a feature that is to be supported in future updates.

Type Feature MMDetection3D* 3D-SemSeg† lidarseg3d‡ Open3D-ML§ OpenPCSeg (Ours)

Task
Semantic Segmentation ✓ ✓ ✓ ✓ ✓

Panoptic Segmentation ✕ ✕ ✕ ✕ ✓

4D Panoptic Segmentation ✕ ✕ ✕ ✕ ✓

Dataset

SemanticKITTI ✓ ✓ ✓ ✓ ✓

nuScenes ✕ ✓ ✓ ✕ ✓

Waymo Open ✕ ✕ ✕ ✕ ✓

ScribbleKITTI ✕ ✕ ✕ ✕ ✓

Model

SqueezeSeg ✕ ✕ ✕ ✕ ✓

SqueezeSegV2 ✕ ✕ ✕ ✕ ✓

RangeNet++ ✕ ✕ ✕ ✕ ✓

SalsaNext ✕ ✓ ✕ ✕ ✓

FIDNet ✕ ✕ ✕ ✕ ✓

CENet ✕ ✕ ✕ ✕ ✓

PolarNet ✕ ✕ ✕ ✕ ✓

Panoptic-PolarNet ✕ ✕ ✕ ✕ ✓

RandLA-Net ✕ ✕ ✕ ✓ ✕

KPConv ✕ ✕ ✕ ✓ ✕

SparseConvUnet ✕ ✕ ✕ ✓ ✕

PointTransformer ✕ ✕ ✕ ✓ △
PointNet++ ✓ ✕ ✕ ✕ ✕

PAConv ✓ ✕ ✕ ✕ ✕

DGCNN ✓ ✕ ✕ ✕ △
MinkowskiNet ✕ ✕ ✕ ✕ ✓

Cylinder3D ✕ ✓ ✕ ✕ ✓

DS-Net ✕ ✕ ✕ ✕ ✓

4D-DS-Net ✕ ✕ ✕ ✕ ✓

RPVNet ✕ ✕ ✕ ✕ ✓

SPVCNN ✕ ✕ ✕ ✕ ✓

2DPASS ✕ ✓ ✕ ✕ △
COARSE3D ✕ ✓ ✕ ✕ △

SDSeg3D ✕ ✕ ✓ ✕ ✕

MSeg3D ✕ ✕ △ ✕ ✕

Augmentation
Mix3D ✕ ✕ ✕ ✕ ✓

LaserMix ✕ ✕ ✕ ✕ ✓

PolarMix ✕ ✕ ✕ ✕ ✓

# Supported Features 5 7 5 6 28

• COARSE3D [24]: a weakly supervised LiDAR se-
mantic segmentation framework with a compact class-
prototype contrastive learning scheme, proposed in
2022.

A.1.2 Bird’s Eye View

• PolarNet [55]: a classic 3D segmentor which quantiz-
ing points into polar bird’s-eye-view (BEV) grids, pro-

posed in 2020.

• Panoptic-PolarNet [58]: learn both semantic segmen-
tation and class-agnostic instance clustering in a sin-
gle network using a BEV representation to perform Li-
DAR panoptic segmentation task, proposed in 2021.



Table B: Comparisons between the reproduced performance in the OpenPCSeg codebase (mIoU-rep, PQ-rep) and reported
performance from the original papers (mIoU-ori, PQ-ori). We benchmark various popular LiDAR semantic segmentation
methods and LiDAR panoptic segmentation methods on the validation sets of SemanticKITTI [3] and nuScenes [4]. Note
that we only report range-view methods with sizes 64× 2048 and 32× 1920 for SemanticKITTI and nuScenes, respectively.

Model Type SemanticKITTI nuScenes
mIoU-ori mIoU-rep PQ-ori PQ-rep mIoU-ori mIoU-rep PQ-ori PQ-rep

Mix3D [29]
Aug

– – – – – – – –
LaserMix [20] – – – – – – – –
PolarMix [46] – – – – – – – –

SqueezeSeg [44]

Range

31.6 33.0(+1.4) – – – – – –
SqueezeSegV2 [45] 41.3 44.5(+3.2) – – – – – –

RangeNet21 [28] 47.2 49.8(+2.6) – – – – – –
RangeNet53 [28] 50.3 53.3(+3.0) – – – – – –

RangeNet53++ [28] 52.2 54.0(+1.8) – – – 65.8 – –
SalsaNext [8] 55.8 58.2(+2.4) – – – 68.1 – –
FIDNet [57] 58.8 60.4(+2.6) – – – 71.8 – –

CENet [5] 62.6 63.7(+1.1) – – – 73.4 – –

PolarNet [55] BEV 57.2 58.3(+1.1) – – – 71.4 – –
Panoptic-PolarNet [58] – – 59.1 59.5(+0.4) – – 67.7 67.8(+0.1)

MinkowskiNet [7]
Voxel

61.1 68.8(+7.7) – – – 73.2 – –
Cylinder3D [60] 65.9 66.9(+1.0) – – 76.1 76.2(+0.1) – –

DS-Net [15] – – 57.7 58.0(+0.3) – – 42.5 61.0(+18.5)

RPVNet [48] Fusion 68.3 68.8(+0.5) – – 77.6 77.6(+0.0) – –
SPVCNN [39] 63.8 68.7(+3.9) – – – 74.8 – –

A.1.3 Point View

• PointTransformer [56]: a powerful 3D network that
is constructed with the Transformer architecture [42],
proposed in 2021.

• DGCNN [43]: a classic and widely used segmentation
and classification method constructed by using Edge-
Conv, proposed in 2018.

A.1.4 Voxel & Cylinder

• MinkowskiNet [7]: a classic and widely used LiDAR
segmentation and classification method, proposed in
2019.

• Cylinder3D [60]: a cylindrical and asymmetrical 3D
convolution network for LiDAR semantic segmenta-
tion, proposed in 2021.

• DS-Net [15]: adopts consensus-driven fusion module
and the dynamic shifting module for LiDAR panoptic
segmentation, proposed in 2021.

• 4D-DS-Net [14]: an extensive network of DS-Net to
perform 4D panoptic LiDAR segmentation via tempo-
rally unified instance clustering on the aligned adjacent
LiDAR frames, proposed in 2022.

A.1.5 Fusion

• SPVCNN [39]: a powerful 3D segmentor adopt point-
voxel fusion, proposed in 2020.

• RPVNet [48]: a multi-view LiDAR semantic segmen-
tation method which includes range-point-voxel fu-
sion, proposed in 2021.

• 2DPASS [49]: a new framework for LiDAR semantic
segmentation via 2D prior-related knowledge distilla-
tion, proposed in 2022.

A.2. Supported Data Augmentation Technique

• Mix3D [29]: a data augmentation technique for seg-
menting large-scale 3D scenes which build new train-
ing samples by mixing two augmented scenes, pro-
posed in 2021.

• PolarMix [46]: a data augmentation technique that
cuts, edits, and mixes point clouds along the scanning
direction from two scenes, proposed in 2022.

• LaserMix [20]: a powerful data augmentation tech-
nique that intertwines laser beams from different Li-
DAR scans, proposed in 2022.

A.3. Supported LiDAR Segmentation Dataset

• SemanticKITTI [3]: a large-scale outdoor dataset for
semantic scene understanding of LiDAR sequences



Table C: Comparisons among the variants of MinkowskiNet[7] and SPVCNN[39] in the OpenPCSeg codebase. Results
are on the validation sets of SemanticKITTI [3], nuScenes [4] and Waymo Open [37]. Symbol mk denotes the number of
layers of the network; Symbol cr is the channel expansion rate. Note that the default setting of mk and cr are 18 and 1.0,
respectively, for MinkowskiNet[7] and SPVCNN[39].

Model Variant Type #Param SemanticKITTI nuScenes Waymo Open
mIoU-ori mIoU-rep mIoU-ori mIoU-rep mIoU-ori mIoU-rep

MinkowskiNet [7] mk18cr0.5

Voxel

5.5 M 58.9 68.7(+9.8) – – – –
MinkowskiNet [7] mk18cr1.0 21.7 M 61.1 68.8(+7.7) – 73.2 – 66.7
MinkowskiNet [7] mk34cr1.0 37.9 M – 70.1 – 75.7 – –
MinkowskiNet [7] mk34cr1.6 96.5 M – 70.1 – 76.2 – 68.2

SPVCNN [39] mk18cr0.5

Fusion

5.5 M 60.7 68.7(+8.0) – – – –
SPVCNN [39] mk18cr1.0 21.8 M 63.8 67.6(+3.8) – 74.8 – 66.8
SPVCNN [39] mk34cr1.0 37.9 M – 69.0 – 76.1 – –
SPVCNN [39] mk34cr1.6 96.7 M – 68.4 – 76.8 – 68.6

collected from the 64-beam scan sensor, proposed in
2019.

• nuScenes [9, 4]: a large-scale benchmark with support
for various tasks, including camera images and LiDAR
scans, and the point clouds are collected from the 32-
beam scan sensor, proposed in 2020.

• Waymo Open [37]: A large-scale outdoor dataset
consisting of well-synchronized and calibrated high-
quality LiDAR and camera data, and the point clouds
are collected from the 64-beam scan sensor, proposed
in 2020.

• ScribbleKITTI [41]: is a recent variant of the Se-
manticKITTI dataset, which contains the same number
of scans but is annotated with line scribbles (approxi-
mately 8.06% valid semantic labels) rather than dense
annotation, proposed in 2022.

B. Additional Implementation Details
Network Structure. For the image branch, the input im-
age size is 376×1241 on the SemanticKITTI [3] dataset.
For the multi-camera images of nuScenes [4, 9] and
Waymo Open [37] datasets, the image size is 900×1600
and 640×960, respectively. For the range branch, the
input range-image size on the SemanticKITTI, nuScenes
and Waymo Open datasets are 64×2048, 32×1920, and
64×2688, respectively. To construct a robust point-
voxel-range fusion network for the point cloud branch,
we first construct the point-voxel backbone based on the
Minkowski-UNet34 [7]. Then, we add the range-image
branch, i.e., SalsaNext [8], to the point-voxel network and
perform point-voxel-range fusion by the Learnable cross-
View Association module (LVA). Range and voxel branches
are UNet-like architectures with four down-sampling stages
and four up-sampling stages. The dimensions of these nine

stages are 32, 32, 64, 128, 256, 256, 128, 96, and 96, respec-
tively, and the point branch includes 4 MLPs with channel
dimensions being 32, 256, 128, and 96, respectively. In ad-
dition, to increase model capacity, the channel expansion
ratio is set as 1.75, 1.6, 1.6 for SemanticKITTI, nuScenes
and Waymo Open datasets, respectively. We use ImageNet-
pretrained ResNet-34 [13] as the feature extractor for the
image backbone. The image backbone can be flexibly se-
lected from off-the-shelf networks.

Data Augmentation and Test-Time Augmentation. We
take different data augmentation strategies for the point
cloud and image branches. For the image branch, we do
not perform data augmentation. For the point cloud branch,
we perform random flip (τflip) along with the X axis, Y
axis and XY axis, and random translation (τtrans) within
the normal distribution of [0, 0.1] as well as LaserMix [20]
and PolarMix [46]. Global scaling (τscal) and global rota-
tion (τrot) are also adopted. The scaling factor and rotation
angle are randomly selected within [0.9, 1.1] and [0, 2π] for
random scaling and random rotation. To further improve
the performance of our model on the online leaderboard,
we fine-tune our trained model on both train and valida-
tion set for 12 or 24 epochs with cosine annealing sched-
ule [26] on the SemanticKITTI and nuScenes datasets, re-
spectively, and adopt new Test-Time Augmentation (TTA)
strategy as in [22]. Specifically, given an input LiDAR
scan p ∈ RN×3 in a LiDAR point cloud with coordi-
nates (px, py, pz). We apply the above four data augmenta-
tion transformations for p in a compound way τcomp(p) =
τtrans(τflip(τscal(τrot(p)))). The input scan is augmented
into a set of {p,pcomp,i}, where i is the index of the aug-
mented samples in the set. After that, the output of the pre-
diction from multiple augmented of input LiDAR scan p
are summed and performed the argmax to generate the fi-
nal predictions at the inference stage. Note that the rotating
angles are {0,±π

8 ,±
π
4 ,±

3π
4 ,± 7π

8 , π} for yaw rotation in
test-time.



Table D: Quantitative results of UniSeg and state-of-the-art LiDAR semantic segmentation methods on the test set of
SemanticKITTI [3].
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PointNet [31] 14.6 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7
PointNet++ [32] 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9

Darknet53 [3] 49.9 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2
RandLA-Net [17] 50.3 94.0 19.8 21.4 42.7 38.7 47.5 48.8 4.6 90.4 56.9 67.9 15.5 81.1 49.7 78.3 60.3 59.0 44.2 38.1
RangeNet++ [28] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9

PolarNet [55] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5
SqueezeSegv3 [47] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9

KPConv [40] 58.8 96.0 32.0 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 95.0 64.2 84.8 69.2 69.1 56.4 47.4
Salsanext [8] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1

FusionNet [54] 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5
KPRNet [19] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1

TORNADONet [12] 63.1 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9
RangeViT [1] 64.0 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7
AMVNet [25] 65.3 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2

GFNet [33] 65.4 96.0 53.2 48.3 31.7 47.3 62.8 57.3 44.7 93.6 72.5 80.8 31.2 94.0 73.9 85.2 71.1 69.3 61.8 68.0
JS3C-Net [50] 66.0 95.8 59.3 52.9 54.3 46.0 69.5 65.4 39.9 88.9 61.9 72.1 31.9 92.5 70.8 84.5 69.8 67.9 60.7 68.7
SPVNAS [39] 66.4 97.3 51.5 50.8 59.8 58.8 65.7 65.2 43.7 90.2 67.6 75.2 16.9 91.3 65.9 86.1 73.4 71.0 64.2 66.9

WaffleIron [30] 67.3 96.5 62.3 64.1 55.2 48.7 70.4 77.8 29.6 90.5 69.5 75.9 24.6 91.8 68.1 85.4 70.8 69.6 62.0 65.2
Cylinder3D [60] 68.9 97.1 67.6 63.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2

AF2S3Net [6] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
RPVNet [48] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4

SDSeg3D [22] 70.4 97.4 58.7 54.2 54.9 65.2 70.2 74.4 52.2 90.9 69.4 76.7 41.9 93.2 71.1 86.1 74.3 71.1 65.4 70.6
GASN [53] 70.7 96.9 65.8 58.0 59.3 61.0 80.4 82.7 46.3 89.8 66.2 74.6 30.1 92.3 69.6 87.3 73.0 72.5 66.1 71.6
PVKD [16] 71.2 97.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8

2DPASS [51] 72.9 97.0 63.6 63.4 61.1 61.5 77.9 81.3 74.1 89.7 67.4 74.7 40.0 93.5 72.9 86.2 73.9 71.0 65.0 70.4

UniSeg (Ours) 75.2 97.9 71.9 75.2 63.6 74.1 78.9 74.8 60.6 92.6 74.0 79.5 46.1 93.4 72.7 87.5 76.3 73.1 68.3 68.5

Table E: Quantitative results of UniSeg and state-of-the-art LiDAR panoptic segmentation methods on the test set of Se-
manticKITTI [3].

Methods PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

RangeNet++ [28] + PointPillars [21] 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5 52.4
LPASD [27] 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2 50.9

KPConv [40] + PointPillars [21] 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0 58.8
SalsaNext [8] + PV-RCNN [35] 47.6 55.3 58.6 79.5 39.1 45.9 82.3 53.7 67.9 77.5 58.9
KPConv [40] + PV-RCNN [35] 50.2 57.5 61.4 80.0 43.2 51.4 80.2 55.9 68.7 79.9 62.8

Panoster [10] 52.7 59.9 64.1 80.7 49.9 58.8 83.3 55.1 68.2 78.8 59.9
Panoptic-PolarNet [59] 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2 59.5

DS-Net [15] 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6
EfficientLPS [36] 57.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5 61.4

GP-S3Net [34] 60.0 69.0 72.1 82.0 65.0 74.5 86.6 56.4 70.4 78.7 70.8
SCAN [49] 61.5 67.5 72.1 84.5 61.4 69.3 88.1 61.5 74.1 81.8 67.7

Panoptic-PHNet [23] 64.6 70.2 74.9 85.7 66.9 73.3 91.5 63.0 76.1 81.5 68.4

UniSeg (Ours) 67.2 72.1 78.1 85.5 67.5 75.7 89.0 67.0 79.8 83.0 73.8

Panoptic Head. We follow the instance head design in [58]
to predict the instance centers and offsets for each BEV
pixel. During the training phase, we encode the ground-
truth center map by a 2D Gaussian distribution around each
instance’s mass center and create an offset map where the
offset measures the distance to its corresponding instance’s
mass center. The size of the center map and the offset map
is 480×360. The semantic segmentation predictions are uti-
lized to create the foreground mask to form instance groups.
Then, we conduct 2D class-agnostic instance grouping by
predicting the center heatmap and offset for each point on

the XY -plane. Finally, each instance group is assigned a
unique label via majority voting to create the final panop-
tic segmentation. For the nuScenes panoptic segmentation,
we follow [52] to refine the instance segmentation results
via the predicted bounding boxes of the TransFusion detec-
tor [2]. For the panoptic segmentation evaluation, we eval-
uate the predicted instance with a minimal point of 30, and
50 as a valid instance on the nuScenes and SemanticKITTI
datasets, respectively.

Evaluation Metrics. The definition of Panoptic Quality
(PQ) [18], Segmentation Quality (SQ), and Recognition



Table F: Quantitative results of UniSeg and state-of-the-art LiDAR semantic segmentation methods on the test set of
nuScenes [4].
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PolarNet [55] 69.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
JS3C-Net [50] 73.6 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1

PMF [61] 77.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0
Cylinder3D [60] 77.2 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6

AMVNet [25] 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVCNN [39] 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
AF2S3Net [6] 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
2D3DNet [11] 80.0 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2

GASN [53] 80.4 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2
2DPASS [51] 80.8 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0

LidarMultiNet [52] 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6

UniSeg (Ours) 83.5 85.9 71.2 92.1 91.6 80.5 88.0 80.9 76.0 86.3 76.7 97.7 71.8 80.7 76.7 91.3 88.8

Table G: Quantitative results of UniSeg and state-of-the-art LiDAR semantic segmentation methods on the val set of
Waymo Open Dataset [37]. Methods with * are our implementations.
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P-Transformer* [56] 63.3 93.1 58.8 61.4 25.4 0.0 67.9 85.5 72.3 36.2 71.4 66.4 58.7 54.3 93.7 90.0 64.7 65.2 90.4 48.2 42.8 74.5 71.7
Cylinder3D* [60] 66.0 95.1 59.6 74.1 28.7 2.4 62.3 86.8 71.5 33.6 73.4 65.2 62.0 76.5 95.1 91.0 66.6 65.5 92.3 49.9 47.1 79.0 75.1

SPVCNN* [39] 67.4 94.3 59.8 78.5 27.5 0.0 70.8 87.8 74.9 39.2 74.4 69.5 70.4 79.4 94.8 90.8 66.9 66.6 91.7 50.9 43.9 77.2 72.7

UniSeg (Ours) 69.6 94.4 60.4 79.6 40.6 0.0 73.2 89.0 75.7 43.3 76.1 70.2 75.5 80.8 95.2 91.0 68.2 68.7 92.6 53.9 48.3 78.8 75.8

Quality (RQ) is given as follows:

PQ =

∑
(i,j)∈TP IoU(i, j)

|TP |︸ ︷︷ ︸
SQ

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

RQ

.

(1)
The aforementioned three metrics are also calculated sep-
arately on things and stuff classes which produce PQTh,
SQTh, RQTh, and PQSt, SQSt, RQSt. In addition, we report
PQ† which is defined by swapping PQ of each stuff class to
its IoU and then averaging over all classes.

C. Additional Quantitative Result
We provide a more comprehensive comparison between

UniSeg and competitive LiDAR segmentation networks.
Table D shows the class-wise IoU scores of different Li-
DAR semantic segmentation methods on the test set of
SemanticKITTI [3]. Among all the LiDAR segmenta-
tion algorithms, UniSeg achieves compelling results. Ta-
ble E shows the PQ, RQ, SQ, mIoU scores of differ-
ent LiDAR panoptic segmentation methods on the test set
of SemanticKITTI [3]. We can observe a clear advan-
tage of UniSeg over other solutions. Table F shows the
class-wise IoU scores of different LiDAR semantic seg-
mentation methods on the test set of nuScenes [9, 4].

UniSeg yields high mIoU scores than the SoTA solution
of LidarMultiNet [52], which demonstrates again the ad-
vantage of UniSeg. In addition, we provide detailed perfor-
mance on the Waymo Open [37] val set in Table G. It shows
UniSeg obtains higher efficacy.

D. Additional Qualitative Result
We provide more visual comparisons of UniSeg with

baseline algorithm (single modal) in Fig. A, Fig. B,
and Fig. C on the validation set of SemanticKITTI [3]
, nuScenes [9, 4] and Waymo Open [37], respectively.
To highlight the differences in the error map, the cor-
rect/incorrect predictions are painted in gray/red, respec-
tively. For the ground truth, different colors represent differ-
ent classes. The single-modal baseline has higher prediction
errors than our UniSeg, especially on small objects, e.g.,
pedestrians. For example, in Fig. A, the baseline mistak-
enly predicts the person and fence and has higher prediction
errors on the road boundaries. By contrast, UniSeg makes
much better predictions on both person and fence, as well as
the road boundaries, which is attributed to the comprehen-
sive information provided by camera images and all views
of the point cloud. In a nutshell, UniSeg can make more ac-
curate point-wise predictions regardless of the distance and
point density variation than the baseline.
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Figure A: Qualitative results of UniSeg on the SemanticKITTI validation set.
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Figure B: Qualitative results of UniSeg on the Waymo Open validation set.
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Figure C: Qualitative results of UniSeg on the nuScenes validation set.
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