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A. More Details of Epipolar Pair Search
A.1. Mathematical Derivation

In Sec. 4.1, we obtain the expression of the correspond-
ing epipolar lines (Eq. 3) from point homography transfor-
mation (Eq. 1). Here, we will provide a detailed derivation
of the process. To keep consistent, we illustrate the mathe-
matical derivation with one source view.

Given a pixel pr = (xr, yr, 1)
T in the reference view,

the corresponding pixel ps in the source view is

ps(d) = Ks[R(K−1
r prd) + t] , (a1)

where d denotes the depth of the reference pixel; R and t
indicate the rotation and translation matrices between the
reference and the source view; Kr and Ks are the intrin-
sic matrices of the reference view and source view, respec-
tively. For easy understand, Eq. (a1) can be expressed as

ps(d) = ds ∗ (xs(d), ys(d), 1)
T = Wprd+ b , (a2)

where W = KsRK−1
r , b = Kst. We can further trans-

form Eq. (a2) into a coordinate form:

xs(d) =
a1d+ b1
a3d+ b3

, ys(d) =
a2d+ b2
a3d+ b3

, (a3)

where a1 = w11xr +w12yr +w13, a2 = w21xr +w22yr +
w23, a3 = w31xr + w32yr + w33; wij is an element of
matrix W, and bi is an element of vector b.

Since {ai}3i=1 and {bi}3i=1 are constants associated with
the camera parameters and the coordinate of pr, the stan-
dard equation for the epipolar line ys(d) = kxs(d) + b can
be formulated as

k =
∆ys(d)

∆xs(d)
=

a2b3 − a3b2
a1b3 − a3b1

b = ys(0)− kxs(0) =
b2
b3

− k
b1
b3

. (a4)
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Specifically, when ∆xs(d) → 0, the stand equation for the
epipolar line is xd(s) = k

′
ys(d) + b

′
, which can be formu-

lated as 
k

′
=

∆xs(d)

∆ys(d)
=

a1b3 − a3b1
a2b3 − a3b2

b
′
= xs(0)− k

′
ys(0) =

b1
b3

− k
′ b2
b3

. (a5)

A.2. Discussion about Quantification

we quantify the pre-calculated k and b by rounding as
k = sk ∗ round( k

sk
)

b = sb ∗ round(
b

sb
)

, (a6)

where sk and sb are the hyperparameters for rounding, and
quantization precision (k, b) depends on the precision of
them. To explore the effect of quantization precision for
epipolar pair search, we list common precision combina-
tions of sk and sb in Table A1.

The quantization precision of both k and b will affect
the effect of epipolar pair search, and thus affect the perfor-
mance. Besides, the quantization precision also influences
the efficiency of epipolar pair search, as finer quantization
precision leads to more clusters and vice versa. Consider-
ing the effectiveness and efficiency, we choose the precision
combination of sk = 0.1 and sb = 10 in our implementa-
tion.

B. Efficiency Comparison

We empirically study the efficiency of the point-to-line
and the line-to-line implementations in our ablation stud-
ies (Sec. 5.3). Here, we analyze their complexity theo-
retically. In addition, we compare the global aggregation
strategy: plane-to-plane (Linear), which is applied in Trans-
MVSNet [2].



sk sb ACC.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓
1 0.1 0.327 0.267 0.297
1 1 0.328 0.260 0.294
1 10 0.325 0.263 0.294

0.1 0.1 0.324 0.263 0.294
0.1 1 0.325 0.257 0.291
0.1 10 0.329 0.253 0.291

0.01 0.1 0.325 0.271 0.298
0.01 1 0.332 0.260 0.296
0.01 10 0.327 0.265 0.296

Table A1. Comparison of different quantification precision.

B.1. Theoretical Efficiency Comparison

Given Q ∈ RB×N1×C , K ∈ RB×N2×C , and V ∈
RB×N2×C , the computational complexity of the vanilla
Transformer [7] is B(9N1C

2 + 2N2C
2 + 2N1N2C). The

computational complexity of the linear Transformer [3] is
B(10N1C

2 + 3N2C
2).

For line-to-line and point-to-line, the computational
complexity depends on the number of epipolar lines as well.
Specifically, suppose there are M corresponding epipolar
lines and the average number of pixels on an epipolar line
is S. For point-to-line, B = HW , N1 = 1, N2 = S, its
computational complexity is HW (9C2 + 2SC2 + 2SC).
For line-to-line, B = M , N1 = S, N2 = S, its computa-
tional complexity is M(11SC2+2S2C). It is worth noting
that M and S are of the same order of magnitude as H and
W . They are usually smaller because the epipolar lines only
exist in the common view of the two images. For the plane-
to-plane in the form of linear Transformer implementation,
B = 1, N1 = N2 = HW , its computational complexity is
13HWC2.

For a more intuitive comparison, we set H = 80, W =
64, C = 64, S = 30, M = 30: the computational complex-
ity of point-to-line is 1.5G; the computational complexity
of line-to-line is 0.04G; and the computational complexity
of plane-to-plane (linear) is 0.27G.

B.2. Empirical Efficiency Comparison

We report the inference time to compare different aggre-
gate ways in practice. As shown in Table A2, “line-to-line”
is a more efficient and effective way to aggregate informa-
tion, which maintains the highest performance while being
the lowest in terms of time and memory consumption.

C. Additional Ablation Studies
C.1. Number of Blocks

Table A3 shows the impact of different block numbers of
the Intra-Epipolar Augmentation (IEA) and Cross-Epipolar
Augmentation (CEA). As the number increases, no perfor-
mance gain is obtained, which suggests that one block is

mothod Overall(mm) ↓ Time(ms) ↓ Memory(MB) ↓
Line-to-line 0.291 2.0 2769
Point-to-line 0.290 3.5 4207
Plane-to-plane (Linear) 0.303 3.9 2997

Table A2. Comparison of different ways of information aggre-
gation. “Line-to-line” refers to the information aggregation be-
tween epipolar pairs. “Point-to-line” refers to a point interact-
ing with its corresponding epipolar line. “Plane-to-plane (Linear)
refers to the information aggregation between two whole images in
the form of linear Transformer [3] implementation. “Time” refers
to inference time through one Transformer (for 864 × 1152 im-
ages).

Na ACC.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓ Time(s) ↓ Param(M) ↓
1 0.329 0.253 0.2910 0.46 1.09
2 0.327 0.254 0.2905 0.47 1.16
3 0.327 0.254 0.2905 0.47 1.23

Table A3. Ablation study on the number of IEA and CEA
blocks.

PE ACC.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓
w/o 0.329 0.260 0.295
learnable 0.330 0.254 0.292
sine 0.329 0.253 0.291

Table A4. Ablation study on spatial positional encoding.
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Figure A1. Visualization of confidence maps generated through
different loss functions.

sufficient for non-local feature aggregation. Since more
blocks lead to larger computation overhead, Na is set to 1
in our implementation.

C.2. Spatial Positional Encoding

In Epipolar Transformer (ET), we apply Positional En-
coding (PE) to add spatial positional information to feature
sequences. We compare different positional encoding im-
plementations in Table A4. Positional encoding is necessary
and the performance of “learnable” and “sine” positional
encoding are similar. Since “sine” positional encoding is
parameter-free, we used “sine” positional encoding in our
implementation.



Loss ACC.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓
CE 0.329 0.253 0.291
OT 0.383 0.223 0.303
L1 0.367 0.245 0.306

Table A5. Ablation study on different loss functions.“CE” refers
to the commonly used cross-entropy loss and “OT” refers to the
Wasserstein loss computed by optimal transport, where the depth
estimation is regarded as a classification problem. “L1” refers to
the average absolute value error where the depth estimation is re-
garded as a regression problem.

 Cross-Attention

Input : Xref

Q = WQ  X K = WK  X V = WV  X

Add & Norm

Input : Xsrc

Position Position

FFN

Add & Norm

Output : XCE

  Self-Attention

Input : X

Q = WQ  X K = WK  X V = WV  X

Output : XIE

Position

Add & Norm

(a) Intra-Epipolar Augment(IEA) (b) Cross-Epipolar Augment(CEA) 

Figure A2. The structure of IEA and CEA. IEA is based on
the self-attention mechanism while CEA is based on the cross-
attention mechanism.

Order ACC.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓
IEA+CEA 0.329 0.253 0.291
CEA+IEA 0.327 0.257 0.292

Table A6. Ablation study on different orders of IEA and CEA.

C.3. Loss Function

In Sec. 4.3, we formulate depth estimation as a classi-
fication problem and apply cross-entropy loss as the loss
function of ET-MVSNet. As shown in Table A5, we com-
pare different loss functions. The experimental results indi-
cate that the cross-entropy loss achieves the highest overall
metric, which better balances accuracy and completeness.
Besides, as shown in Fig. A1, the confidence map gener-
ated through “CE” is more advantageous for filtering out-
liers and obtaining more accurate point clouds.

C.4. Order of IEA and CEA

As shown in Fig. A2, the Intra-Epipolar Augmentation
(IEA) and Cross-Epipolar Augmentation (CEA) modules
perform information aggregation within and across epipolar
lines, respectively. We explore the order of IEA and CEA
in Table A6. The order of IEA and CEA has little impact

on the final performance. In our implementation, IEA is
executed first followed by CEA.

D. Depth Map Fusion
As described in the main text, the predicted depth maps

of multiple views are filtered and fused into a point cloud.
Previous MVS methods always choose the suitable fusion
method. In the paper, we follow the commonly used dy-
namic checking strategy [9] for depth filtering and fusion
on both DTU dataset [1] and Tanks and Temples bench-
mark [4].

On the DTU dataset, we filter the confidence map of the
last stage with a confidence threshold(0.55) to measure pho-
tometric consistency. For geometry consistency, we use a
strict standard, as shown below.

errc < threshc , errd < log(threshd) , (a7)

where errc and errd denote the reprojection coordinate er-
ror and relative error of reprojection depth, respectively.
threshc and threshd denote thresholds for errc and errd,
respectively. In addition, we adopt the normal(pcd) fusion
method [6], and our method can achieve 0.298 on the “over-
all” metric.

On the Tanks and Temples benchmark, We follow [5] to
adjust hyperparameters for each scene including confidence
thresholds, geometric thresholds, etc. For benchmarking
on the advanced set of Tanks and Temples , the number of
depth hypotheses in the coarsest stage is changed from 8 to
16. And we use the model trained on the DTU dataset to
reconstruct the “Horse” scene, and then use the fine-tuned
model on BlendedMVS dataset [10] to reconstruct other
scenes.

E. More Visualization Results
Qualitative Analysis. The Qualitative results of Tanks and
Temples benchmark [4] are shown in Fig. A3. Compared
with other state-of-the-art methods [8, 2, 5], our method can
reconstruct more details in some challenging areas, such as
surfaces with weak and repetitive textures.
Epipolar Pairs. We visualize some epipolar line pairs
searched by our algorithm in Fig. A4. In the case of large
differences, pixels with the same semantic information are
still on the same epipolar line pair, indicating the effective-
ness of our algorithm.
More Point Cloud Results. More visualization results
of our model are shown in Fig. A5, which contains point
clouds of Tanks and Temples benchmark [4].
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