Table 1: Glossary and notation

(A)TT3D (Amortized) Text-to-3D
NeRF Neural Radiance Field [0]
DDM Denoising Diffusion Model
MLP Multi-layer Perceptron
DF27, DF411 DreamFusion’s [1] 27 main text prompts & the extended 411 prompts
n,méeN The size of different objects
T,y,2,- - €R Scalar coordinates
x,y,z, - €R"? Vectors
XV, Z,... The domain of x,y, z, . . .
x=[r,y,z2]eX A point

r=|o,rgb R
wew
Y : X =T
v:I'=>R
z
ceC
m:C—W
veR”
N, U, Dir, Bern
€, €
k € RT
ac[0,1]

The density and color values
The parameters of the point encoder function
The point encoder function
The final MLP mapping point encodings to radiance
The problem context for amortization
A text embedding used to condition the DDM and as problem context
The mapping network from problem context to modulations
The intermediary vector-embedding of ¢ in m
Normal, uniform, Dirichlet, and Bernoulli distributions respectively
Noise added to rendered frames, or as predicted by the DDM
The concentration parameter of the Dirichlet distribution
An interpolation coefficient, sampled from Dir(x) in training

L

w
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A loss function

A guidance weight
Parameters of the Adam optimizer [26]

A. Glossary
B. Experimental Setup

B.1. Implementation Details

We replicate DreamFusion [1] and Magic3D’s [2] setup
where possible and list key details here. We recommend
reading these papers for additional context.

B.1.1 Point-encoder ~

We followed Instant NGP [7] to parameterize our NeRF,
consisting of dense, multi-resolution voxel grids and dic-
tionaries. We only use dense voxel layers unless spec-
ified, which trained faster with negligible quality drop.
For our multi-resolution voxel grid, we use resolutions of
[9, 14,22, 36, 58], with 4 features per level. When active,
we use a further three levels of hash grid parameters. Each
level’s features are linearly interpolated according to spatial
location and concatenated, leading to a final output feature
size of 20 with dense voxel grids and 32 with the full INGP.

B.1.2 Final NeRF MLP v

We select a minimal final MLP to maintain evaluation
speed, with a single hidden layer with 32 units and a SiLU
activation [72]. The majority of our model’s capacity comes
from the point-encoder. We use a softplus activation for the
density output and sigmoid activations on the color.

B.1.3 Mapping Network m

The mapping network computes a fixed-size vector repre-
sentation v of the task from the text embedding. We only
use the CLIP embedding for feature grid modulation be-
cause it was sufficient and including the TS embedding in-
creases network size. We apply spectral normalization to all
linear layers. We considered concatenation, hypernetwork,
and attention approaches for modulation [17]:
Concatenation: The simple strategy of naively concate-
nating (a vector-representation f of) the text to the point-
encoding — i.e., v(,,(x), f(c)) was prohibitively expen-
sive. This is because we require the cost of the final per-
point NeRF MLP v to be minimal for cheap rendering. The
concatenation approach of v(~,,(x),v) introduces over-
head by increasing per-iteration training time by 37% but
doesn’t significantly impact quality. In inference, the hy-
pernet method is superior, reducing cost by ~ 20 — 75%, as
we only generate the grid parameters w once when render-
ing multiple views of 1 object, bypassing the use of a single,
larger NeRF v with concatenation.

Hypernetwork: We first flatten the token and pass it
through an MLP to produce a vector-embedding, which is
used by a linear layer to output the point-encoder’s voxel
grid parameters. As the CLIP embedding was already a
strong representation, we found that a simple linear layer
for the text-embedding to vector-embedding was sufficient.



We converged with deeper hypernetworks — by using
spectral normalization on all linear layers — but this offered
no quality benefit while taking longer to train. We also
found removing the bias on the final linear layer decreased
noise by forcing the result to depend on the prompt.

We vary the vector embedding v’s size in our experi-
ments, which largely dictates our amortized model’s capac-
ity. The mapping network m dominates the model’s mem-
ory cost, while the text’s vector-embedding largely dictates
the mapping network size. Our memory cost scales linearly
with the vector-embedding size. We use a vector embed-
ding v size of 32 for all experiments except interpolation,
where we use 2. We have experiments where the number
of text prompts is both smaller (DF27) and larger (DF411,
compositional prompts) than the vector-embedding.
Attention: We also investigated using an attention-based
mapping network with a series of self-attention layers to
process text embeddings before feeding into the hypernet-
works for each multi-resolution grid level. Our attention
performed with comparable quality but trained more slowly.
However, we expect modifications to be necessary on more
complex prompt sets.

B.1.4 Environment Mapping Network

In our experiments, we use a background, a function map-
ping ray directions — and text embeddings — to colors, which
we denote as the environment map. Specifically, we en-
code the ray directions, concatenate them with the vector-
embedding v from the mapping network, and feed them into
a final MLP. We use a sigmoid activation on the output color
and spectral norm on all linear layers. We encode the ray
directions with a sinusoidal positional encoding [73] (fre-
quencies 20,21, ... 2L~1 [ = 8), and no hidden layers —
i.e., a linear layer — for our final MLP.

B.1.5 Spectral Normalization

We found spectral normalization — which can be imple-
mented trivially in PyTorch on linear layers — to be critical
for mapping net training, but non-essential on other parts.
In the mapping network, we must use spectral normaliza-
tion on all linear layers for the hypernetwork and attention
approaches or we suffer from numerical instability. Using
spectral normalization on the linear layers in the environ-
ment map, or final NeRF module was unnecessary.

B.1.6 Sampling Text Prompts

We cache the CLIP (and T5) embeddings for all experi-
ments to avoid repeated computation and the memory over-
head of the large text encoders. We use multiple text
prompts in each batched update.

Interpolations: We sample interpolated embeddings dur-
ing training in interpolation experiments (Section 4.4). See
Section B.1.14 or Figure 18 for more interpolation setup
details. When interpolating between prompts with text-
embeddings ¢; and ¢, we sample a weight o € [0, 1] and
input ¢/ =(1 — a)e; + acy to the mapping network.

B.1.7 Sampling Rendering Conditions

As in DreamFusion [1], we randomly sample rendering
conditions, including the camera position and lighting con-
ditions. We use a bounding sphere of radius 2 in all exper-
iments. We sample the point light location with distance
from U(1, 3) and angle relative to the random camera posi-
tion of U(0, 7/4). We sample “soft” textureless and albedo-
only augmentations to allow varying shades during training.
Also, we sample the camera distance from ¢/(2, 3) and the
focal length from ¢/(0.7,1.35).

B.1.8 Score Distillation Sampling

For the DDM’s sampling, we sample the time-step from
U4(0.002, 1.0) and use a guidance weight of 100.

B.1.9 The Objective

The regularizers: The orientation loss [74] (as in Dream-
Fusion [1]) encourages normal vectors of the density field
to face the camera when visible, preventing the model from
changing colors to be darker during textureless renders by
making geometry face “backward” when shaded. Also,
DreamFusion regularizes accumulated alpha value along
each ray, encouraging not unnecessarily filling space and
aiding in foreground/background separation. We do not use
these regularizers for all experiments, as we did not ob-
serve failure modes they fixed, and they made no signifi-
cant change in results over the interval [10~2, 10~!]. Larger
opacity regularization values resulted in empty scenes,
while larger orientation values did not change the initial-
ization from a sphere.

The image fidelity: We train with 32 points sampled uni-
formly along each ray for all experiments except interpo-
lations. For interpolations only, we sample 128 points and
reduced batch size to improve quality. Our underlying text-
to-image model generates 64 x 64 images, leading to 4096
rays per rendered frame. At inference time we render with
higher points per ray to improve quality for negligible cost.
The initialization: As in DreamFusion, we add an initial
spatial density bias to prevent collapsing to an empty scene,
shown in Figure 10, left. Our density bias on the NeRF
MLP output before the softplus activation takes the form:

densityBias(z) = 10 (1 — 2||z|2) @)



B.1.10 The Optimization

We use Adam with a learning rate of 1 x 10~! and o =
0.999. A wide range momentum [; (up to .95) can yield
similar qualities if the step size is jointly tuned, while the
quickest convergence occurs at 0. We do not use the linear
learning rate warmup or cosine decay from DreamFusion.

B.1.11 Memorization Experiments

Our experiments use the same architecture for per-prompt
and amortized training settings to ensure a fair compari-
son. We train models using a batch size of 32 times the
number of GPUs used. Amortized training uses 8 GPUs
while per-prompt uses a single GPU (due to resource con-
straints), with more details in Section B.2. The complete
set of DreamFusion prompts is located here: https://
dreamfusion3d.github.io/gallery.html

B.1.12 Generalization Experiments

Our prompt selections are motivated by the compositional
experiment in DreamFusion’s Figure 4 [1]. Our experi-
ments with pig prompts with the template “a pig {activity}
{theme}, where the activities and themes are any
combination of the following:

The activities: [ “riding a bicycle”, “sitting on a
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chair”, “playing the guitar”, “holding a shovel”, “holding a
blue balloon”, “holding a book”, “wielding a katana”, “rid-
ing a bike”]

The themes: [ “made out of gold”, “carved out of wood”,
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“wearing a leather jacket”, “wearing a tophat”, “wearing
a party hat”, “wearing a sombrero”, “wearing medieval ar-
mor”

Our pig holdout, unseen, testing prompts are pairing the
i*" activity and theme.

Our experiments with animal prompts with the tem-
plate “{animal} {activity} {theme} {hat}, where the
activities, themes and hats are any combination
of the following:

The animals: [ “a squirrel”, “a raccoon”, “a pig”, “a
monkey”, “a robot”, “a lion”, “a rabbit’, “a tiger”, “an
orangutan”, “a bear”]

The activities: [ “riding a motorcycle”, “sitting on a
chair”, “playing the guitar”, “holding a shovel”, “holding a
blue balloon”, “holding a book”, “wielding a katana’]

The themes: [ “wearing a leather jacket”, “wearing a
sweater”, “wearing a cape”, “wearing medieval armor”,
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“wearing a backpack”, “wearing a suit’’]

CLIY3

The hats: [ “wearing a party hat”, “wearing a sombrero”,
“wearing a helmet”, “wearing a tophat”, “wearing a back-
pack”, “wearing a baseball cap’]

Our holdout, unseen, animal testing prompts are selected

homogeneously for each training set size.

B.1.13 Finetuning Experiments

We resume training from an amortized training checkpoint
while re-initializing the optimizer state. For the finetuning
experiments, in our mapping network, we only finetune an
offset to the output and detach all prior weights that only
embed text tokens (because we finetune with one prompt).
Other training details are kept equal to per-prompt training.

B.1.14 Interpolation Experiments

In interpolations we use 128 ray samples and batch size 16.
Interpolant concentration: We sample the interpolation
coefficient a ~ Dir(x) from a Dirichlet distribution with
concentration parameter . The Dirichlet distribution al-
lows us to smoothly interpolate from sampling the original
text tokens (with concentration x ~ 0, to uniformly sam-
pling « (with concentration x ~ 1) to focusing on diffi-
cult midpoints (with concentration £ > 1) — see Figure 19.
Specifically, in Figures 3 & 20 we use x = 2.0 for 5000
steps to stabilize the midpoint, followed by x = 0.5 to fo-
cus on the original prompts.
Interpolation types: We provide multiple examples of in-
terpolation types to amortize over that provide qualitatively
different results — see Figure 18.

A simple strategy is to interpolate over the text embed-
ding used to condition the text-to-image model:

C/ = (1 — Oz)Cl + aco (8)

Another strategy is to interpolate the loss function used be-
tween the two prompts. We could evaluate the loss at both
prompts and weight the loss:

Leinal = (1 - a)Eprompt 1+ Oé‘Cprompt2 )

Instead, to interpolate in the loss, we sample the loss for
each prompt with probability «,, which we equate to training
with embedding:

¢ =(1-2Z)e; + Zey where Z ~ Bern(a) (10)

A third strategy, suggested for images in Magic3D [2], in-
terpolates the DDM’s guidance weight. Unlike Magic3D,
we amortize over guidance weights, reducing cost while
providing continuous interpolation (not allowed via re-
training on each weight). Specifically, we guide with:

€ = €uncond. + (1 - a)wleprompt] + QW2 €prompt 2 (11)

Here, the w; and wy are notations for the guidance weights
for the predicted noise on the 1% and 2" prompts respec-
tively, which are fixed and equal in all experiments. This
interpolates between using guidance on the first prompt, to
guidance on the second prompt.
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Figure 10: We show assorted training trajectories of the rendered objects during compositional training from Figures 6 and
2. Left: We visualize the initialization strategy described in Section B.1.9.

B.2. Compute Requirements

We implement our experiments in PyTorch [70].

B.2.1 Per-prompt Optimization

We do all per-prompt training runs on an NVIDIA A40
GPU, with a batch size of 32 for up to 8000 steps or ~ 4
hours. DF27 (Figure 6, left) use 27 runs, while the compo-
sitional prompts (Figure 8) use 50 or 300 subsampled runs
respectively. Each training step costs ~ 1 second.

B.2.2 Amortized Training

Memorization & generalization: When amortizing many
prompts, we use multiple GPUs to train with a larger batch
size, causing amortized and per-prompt training to have dif-
ferent update costs. So we report the total rendered frames
to compare compute accurately. Updates are roughly 1 sec-
ond in each setup.

We perform the DF27 (Figures 6, 11) and DF411 (Fig-
ures 9, 14) runs on 8 NVIDIA A40 GPUs, each with a batch
size of 32. We train DF27 for 13 000 steps (~ 4 hours) and
DF411 for 100 000 steps (about a day).

The compositional runs (Figures 2, 6, 8) were performed
on 4 NVIDIA A100 GPUs, with a batch size of 32 per GPU,
for 40 000 steps or about 10 hours.

Interpolations (Figure 3): We use a single NVIDIA A40
GPU as in per-prompt training.
Finetuning (Figure 17): We use a single NVIDIA A40
GPU as in per-prompt training.

B.2.3 Inference

At inference — delineated from training in Figure 4 — we
generate grid parameters in < 1 second and render frames in
real-time due to our small final NeRF v and efficient point-
encoding v. We use more ray samples at inference than
training due to negligible cost and enhanced fidelity. Mod-
ulation generation occurs once and is reused for each view
& location query, creating negligible overhead with many
views or high-resolution images. During training with 1
view and image size 64 (batch size 8), hypernet modula-
tions introduced an overhead of 24% more time per itera-
tion, which could be avoided if our weights do not need to
be generated. With 1 view and image size 256 (batch size 1)
in inference, the modulation introduced an 11% overhead in
rendering time, dropping to < 1% with 30 views.

C. Results

C.1. Additional Experiments & Visualizations
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Figure 11: Our method, ATT3D, uses a single model to produce 3D scenes with varying geometric and texture details from
the set of 27 prompts in the main DreamFusion paper [1]. The quality is comparable to existing single prompt training and
requires far fewer training resources (Fig. 6).
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Figure 12: We show the same plot as Figure 6 with the ad-
dition of R-precision. Takeaway: Results with R-precision
are similar to — but noisier than — R-probability when we
have few prompts.
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Figure 13: We qualitatively compare the unseen “testing”
results from the various training strategies in Figures 6 and
2, with our method in blue and baselines in red. Notably,
amortized requires no test time optimization, while fine-
tuning uses a small amount, and per-prompt uses a large
amount to tune from scratch.



Figure 14: We show full results from our method on the DF411 prompt set, which we truncate for Figure 9. There are various
examples of the model re-using object components across prompts — see Figure 15.



Component Re-use in DF411
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Figure 15: We show examples of prompts in which our model (from the DF411 run in Figures 9 and 14) re-uses components,
showing a means by which amortization saves compute. Top: The lemur is re-used with different activities. Botfom: The
orangutan is re-colored to a chimpanzee and given a different activity.

Interpolated embeddings not viewed during training
“...dress of fruit...” Le., interpolants have no training “...dress of bags...

il

“a chimpanzee”  “...eating an icecream”

E)

Sururely,

“a chimpanzee” + “eating an icecream”

»

Sururel], oN

“...cottage...” “...house...”
Figure 16: We investigate generalization on the DF411 run (App. Fig. 14). Left: Generalization to interpolated embeddings,
which produces suboptimal results that we improve by amortizing over interpolants as in Figure 3. Right: Generalization to
compositional embeddings. Takeaway: The generalization is promising, yet could be improved, motivating training on large
compositional sets in Figures 6 & 8, and training on interpolants as in Figures 3, 18, 19, & 20.



Finetuning iteration
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Figure 17: We display the results of finetuning held-out, unseen testing prompts from Fig. 2. Top: For amortization, we
finetune from the final optimization value, while for per-prompt, we finetune the model from a random initialization. We
achieve higher quality with fewer finetuning updates. Bottom: Per-prompt optimization fails to recover a blue balloon, and
can not be recovered with finetuning. In contrast, amortized optimization recovers the correct balloon and can be fine-tuned
using Magic3D’s second optimization stage [2].



All setups use modulations from interpolated text-embeddings: m ((1 — a)e; + acs)

“a hamburger” Rendered frames from interpolating o from 0 — 1, after training with various objectives “a pineapple”
Training text-to-image samples use embedding (1 — a)e1 + ez where a ~ Dir(0) = Bern(1/2)

No Interpolations
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Training text-to-image samples use embedding (1 — a)e1 + aez, o ~ Dir(1) =
Latent Interpolations - relevant change in red
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Training text-to-image samples use embeddmg (1 - 2)e1 + Zea where Z ~ Bern(«r), o ~ Dir(1

Loss Interpolations

Training text-to-image samples use guidance weights w: € = €yncond. + (1 - a)wr epmmpﬂ + Qw2€prompt 2, @ ~ Dir(1) =
Guidance Interpolations

Figure 18: We contrast amortizing over different types of interpolations as described in Section B.1.14. For all examples, we
give the mapping network m the interpolated embedding (1 — «)e; + ace. However, we vary the embedding used by the
text-to-image model. Takeaway: We can amortize over various training methods to produce qualitatively different results.
Top: We use no interpolants during training, which can just dissolve between the endpoints. Latent Interpolation: We simply
interpolate between the latent embeddings used for image sampling. Loss Interpolation: We interpolate the loss function
used in training between the prompts, producing objects simultaneously solving both losses. Guidance Interpolation: We
interpolate the guidance weight applied to the prompts, as explored in Magic3D (without amortization) [2].



Rendered Frames Interpolating « from 0 — 1, where training o ~ Dir() with varying

“a wooden pirate ship” “a rubber life raft”

small — large

k during training
k=1 = a~U(0,1)

large — small

Figure 19: We display the results for differing strategies for changing the concentration parameter « for the distribution of
the interpolation weights o.. Note that a concentration of x = 1 is simply a uniform distribution: Dir(1) = ¢/(0, 1). For both
results, we train for 5000 steps with an initial concentration x, which we then change for the final 5000 steps. Takeaway:
The initial shapes learned strongly influence subsequent training, and a “large” concentration x focuses on the midpoint,
while a “small” concentration focuses on the endpoints. If we want the original prompts in the interpolation, then we should
start with « small, while if we desire a steering-wheel-life-raft satisfying both losses, we should start with « large.



“... an adorable cottage with a thatched roof” “... a house in Tudor Style”

“a frog wearing a sweater” “a bear dressed as a lumberjack”

“... a majestic sailboat” “a spanish galleon...”

“a ficus planted in a pot”

¥ 1

“a baby dragon”

“jagged rock” “mossy rock”

Figure 20: We include additional results for using our method to amortize over (loss) interpolants between prompts. We
alternate between a fixed and varied camera view. We show examples of varied buildings, characters, vehicles, plants,
landscapes, or a simple animation of “a baby dragon” aging into an adult.
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