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In this supplementary document, we first show how
event accumulation results in an effective amplification
of pixel-to-pixel contrast threshold variation (Sec. A) and
discuss the optimality of normalization in the threshold-
normalized difference loss (Sec. B). Next, we present im-
plementation details of Robust e-NeRF and the baselines
used in the experiments (Sec. C). We also provide a de-
tailed justification on the qualitative nature of our real ex-
periments (Sec. D). Lastly, we present additional quantita-
tive and qualitative results on all experiments (Sec. E).

A. Amplification of Threshold Variation
As alluded in Sec. 3.3.3, the accumulation of successive

events at each pixel over time intervals leads to the effective
amplification of pixel-to-pixel contrast threshold variation.
This can be shown by simply analyzing the distribution of
the target log-radiance difference after event accumulation,
at any given pixel.

The time-independent contrast threshold of polarity p
can be modeled as a random variable cp ∼ N (Cp, σCp

2)
(Sec. 3.2). Assuming Np number of polarity p events are
accumulated at the pixel within the specified time interval,
the target log-radiance difference ∆ logLacc is then given
by:

∆ logLacc =
∑
p

pNpcp , (9)

which follows the Gaussian distribution below:
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where σc+1,c−1

∈
[
−σc+1

σc−1
, σc+1

σc−1

]
is the covari-

ance between c+1 and c−1.
Note that when N+1 and N−1 increases by a factor

of K, the standard deviation of ∆ logLacc will also in-
crease by the same factor, which results in noisier targets.

Moreover, assuming that c+1 and c−1 do not have a strong
positive correlation (i.e. σc+1,c−1

≪ σc+1
σc−1

, with re-
spect to the range of σc+1c−1 ), which is highly likely to
be true, it can also be shown that standard deviation of
∆ logLacc ≫ |

∑
p pNpσCp

| ≥ 0 under non-zero N+1 and
N−1. This suggests that when N+1C+1 ≈ N−1C−1, which
often holds true in practice over sufficiently long accumula-
tion intervals (relative to the speed of motion and amount of
scene texture), the mean of ∆ logLacc =

∑
p pNpCp ≈ 0

whereas the standard deviation remains very much larger
than 0, especially for large N+1 and N−1. Such a cancella-
tion between positive and negative accumulated events fur-
ther aggravates the target noise. All these observations sug-
gest an effective amplification of threshold variation when
event accumulation is involved.

B. Optimality of Normalization in ℓdiff

As mentioned in Sec. 3.3.3, the threshold-normalized
difference loss ℓdiff (Eq. 6) is optimal in the sense that the
magnitude of the normalized target |pCp/C̄|, which is essen-
tially the normalized threshold Cp/C̄, is always centered at
1 regardless of the threshold ratio C+1/C−1, as follows:

∣∣∣∣pCp

C̄

∣∣∣∣ = Cp

C̄
= 1 + p

C̃

C̄
(11)

where C̃ = 1
2 (C+1 − C−1) and the magnitude of the off-

set C̃/C̄ can be interpreted as the normalized threshold dif-
ference. This facilitates the scale consistency of the loss,
thus enabling the adoption of a single, global loss weight
λdiff for arbitrary contrast threshold values. Nevertheless,
the variance of the normalized target increases as the thresh-
olds become more asymmetric.



C. Implementation Details

C.1. Robust e-NeRF

Architecture. Robust e-NeRF adopts Instant-NGP [5] as
the NeRF backbone, as it allows for high-quality recon-
structions given relatively low training time and memory
cost. More precisely, we employ the implementation pro-
vided by the NerfAcc toolbox [4], due to its simple and
flexible Python APIs, but with some slight modifications.

In particular, parameters of the embedded Multi-Layer
Perceptron (MLP) are initialized using the PyTorch-default
method, instead of Xavier initialization [2]. Furthermore,
we replace all Rectified Linear Unit (ReLU) hidden layer
activations with SoftPlus (β = 100) as it is infinitely differ-
entiable everywhere, thereby facilitating the optimization of
ℓgrad .

Since the predicted log-radiance is at most accurate up
to an offset per color channel (Sec. 3.3.2), or equivalently
the predicted linear radiance (modeled by NeRF) is at most
accurate up to a scale per color channel, we also replace the
bounded sigmoid radiance output activation with the lower-
bounded SoftPlus (default β = 1). In addition, we add a
small ϵ = 0.001 to the positive raw radiance output from
the NeRF model (i.e. L̂ = L̂raw + ϵ) to improve the nu-
merical stability of the predicted log-radiance log L̂. This
augmentation imposes a lower bound of ϵ on the radiance
our method can model, as L̂ > ϵ. Nevertheless, this is not
a cause for concern given the minimum per-channel scale
ambiguity of L̂, non-upper bounded range of L̂raw and non-
zero scene radiance (i.e. absolute darkness is virtually im-
possible in practice).

For synthetic scenes, we also alpha composite L̂raw with
a learnable background radiance, which is parameterized
via SoftPlus to ensure that it is always positive, prior to ϵ-
augmentation. In contrast, common NeRF backbones and
EventNeRF [6] adopt a fixed background, which is inap-
propriate given the scale ambiguity.

As only the threshold ratio can be recovered during the
joint optimization of contrast threshold (Sec. 3.3.3), we
keep the negative threshold C−1 fixed at an arbitrary value
and only optimize the learnable positive-to-negative con-
trast threshold ratio C+1/C−1, which is parameterized via
SoftPlus to ensure that it is always positive. Moreover,
since the refractory period is lower bounded at 0 and upper
bounded by the minumum time interval between successive
events at any pixel (Sec. 4.1), we parameterize the refrac-
tory period via a scaled sigmoid that preserves the gradient
profile of the default, unscaled sigmoid function. We addi-
tionally clamp the parameterized refractory period between
ε and (1 − ε)× its range to limit the minimum gradient of
the scaled sigmoid to approximately ε× the range. This pre-
vents vanishing gradients at the extremes, which implicates
the optimization of the refractory period.

For real scenes, we appropriately predefine the Axis-
Aligned Bounding Box (AABB), as well as the near and far
bounds of the back-projected rays used for volume render-
ing, for each scene. Furthermore, we employ the spheri-
cal space contraction proposed in mip-NeRF 360 [1] to bet-
ter model unbounded scenes. We also increase the occu-
pancy grid resolution to 2563 and set the cone angle (i.e.
ray marching step size increment scale) to 0.004, which is
approximately 1/256 as suggested by Instant-NGP.

Training. The training loss weights used in all experi-
ments are given by λdiff = 1 and λgrad = 0.001. As
suggested by Instant-NGP, we also impose a weight decay
of 10−6 on the MLP to prevent overfitting. The model is
trained for 40 000 iterations with a learning rate decay of
0.33 at 20 000, 30 000 and 36 000 iterations (i.e. 50%, 75%
and 90% progress, as done in NerfAcc), using the Adam
optimizer [3] with a learning rate of 0.01 and PyTorch-
default hyper-parameters. During joint optimization of con-
trast threshold, its parameter is assigned a higher learning
rate of 0.1 to facilitate to its early convergence. Moreover,
since the scaled sigmoid function preserves its gradient pro-
file, but the range of the refractory period may vary greatly,
the learning rate assigned to the (unscaled logit) parame-
ter of refractory period is set to 50× the range. The event
batch size is determined dynamically based on the average
number of ray samples used to render a single pixel, simi-
lar to Instant-NGP, to maximize the utilization of the GPU
memory. Specifically, we ensure that every batch of events
involves approximately 220 = 1 048 576 samples in total,
for either the rays at tref , tcurr (relevant to ℓdiff ) or tsam
(relevant to ℓgrad ). As a side note, the poses of the target
novel views in the real experiments are interpolated from
the given unsynchronized constant-rate camera poses using
LERP and SLERP.

C.2. Baselines

As alluded in Sec. 4, both baselines have been carefully
reimplemented on the same NerfAcc backbone and trained
with the same hyper-parameters (including the weight de-
cay), when applicable, to facilitate a fair comparison. How-
ever, we only train the naı̈ve baseline of E2VID + NeRF
for 20 000 iterations with a learning rate decay of 0.33
at 10 000, 15 000 and 18 000 iterations (i.e. 50%, 75%
and 90% progress) due to its comparably faster conver-
gence, as a result of the direct absolute radiance supervi-
sion. Similar to the target novel views, the poses of the
E2VID-reconstructed training views are also interpolated
from the given unsynchronized constant rate camera poses
using LERP and SLERP. Furthermore, we extend the im-
plementation of E2VID to support the RGGB Bayer pattern
adopted in ESIM.



D. Justification of Qualitative Real Exps.
As mentioned in Sec. 4.2, we mainly perform qualitative

evaluation for the real experiments. This is done because
the target novel views, given by a separate standard camera,
suffer from saturation due to the comparably smaller dy-
namic range of the standard camera, and are not raw images
that have not been processed by the lossy in-camera im-
age processing pipeline. Moreover, the spectral sensitivity
curve of the event camera adopted is also not documented,
hence gamma correction may not accurately align the syn-
thesized views.

Furthermore, the comparably narrower field-of-view of
the event camera and the limited camera motion also leads
to a relatively smaller coverage of the scene, thereby caus-
ing artifacts in the synthesized novel views near the bor-
ders, as observed in the qualitative results. This further
complicates the quantitative evaluation as it is non-trivial
to delineate the valid synthesis regions. Other event cam-
era datasets also suffer from similar issues, as all are not
specifically suited for novel view synthesis.

E. Additional Experiment Results
E.1. Per-Scene Breakdown

Tab. 6 and Fig. 5, 6 show the quantitative and quali-
tative results of all methods, respectively, for each of the
seven synthetic scene sequences simulated with the default
settings, which is optimal for all methods. The per-scene
quantitative results is generally consistent with the aggre-
gate metrics, which is also presented in Sec. 4.1, as our
method outperforms the baselines in most scenes and has
comparable performance in others. The per-scene qualita-
tive results reveal our superior performance in reconstruct-
ing fine details and maintaining high color accuracy, espe-
cially at the background, as previously observed in Sec. 4.1.

E.2. Qualitative Analysis of ℓgrad
Fig. 7 illustrates the effect of target-normalized gradient

loss ℓgrad on the hotdog and chair scene sequences sim-
ulated with the easy and hard settings, respectively, as sim-
ilarly done in Sec. 4.3. It can be observed that with ℓgrad ,
the plate of the hotdog and the back of the chair exhibit less
noise, especially the latter. This is achieved while preserv-
ing high-frequency details on the hotdog and the cushion of
the chair. This further validates the effectiveness of ℓgrad
in regularizing textureless regions, particularly under chal-
lenging conditions.

E.3. Qualitative Results on office-maze

Apart from mocap-1d-trans and mocap-desk2,
we also benchmark all methods on the office-maze se-
quence from the TUM-VIE dataset. We only employ the

subsequence before the 395th target novel view, as it cap-
tures a bounded space of an office (in approximately 2 loops
around the office). The qualitative results reported in Fig. 8
clearly shows our effectiveness in recovering details and re-
solving the scene structure without suffering from severe
fogs in free space.

E.4. Robustness to Temporal Event Sparsity

To evaluate the robustness of our method to temporal
sparsity of the event stream (i.e. data efficiency), we bench-
mark it on a set of nine sequences simulated on the synthetic
chair scene with different refractory periods. Apart from
the standard image similarity performance metrics, we also
report some statistics such as the percentage of τ relative to
the duration of the event sequence, as well as the degree of
sparsity of the event stream, as defined in Sec. 4.1. More-
over, we also report the number of images that occupy an
equivalent amount of memory as the event sequence disre-
garding compression, assuming 8 bits per image pixel chan-
nel and 47 bits per event (i.e. 2 × 11 bits for position, 1 bit
for polarity and 24 bits for timestamp), as implied after de-
compression of the Prophesee EVT 3.0 [7] event encoding
format.

The quantitative and qualitative results given in Tab. 7,
Fig. 9 and Fig. 10 demonstrate our astonishing robustness
under severely sparse event streams, which suggests that our
method is highly data efficient. It is worth noting that our
method can still reconstruct the scene with reasonable ac-
curacy with τ = 1000ms , where only 3 equivalent views
are used and each pixel can only generate at most 4 events
throughout the sequence. The event stream is also around
200× sparser than the default with τ = 0ms .
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Synthetic Scene
Metric Method

chair drums ficus hotdog lego materials mic
Mean

E2VID + NeRF 19.62 19.52 22.44 17.33 17.41 18.13 18.02 18.92
Ev-NeRF 28.93 23.89 28.37 25.22 29.10 26.50 32.03 27.72PSNR ↑
Robust e-NeRF 30.24 23.15 30.71 28.07 27.34 24.98 32.87 28.19

E2VID + NeRF 0.869 0.842 0.863 0.859 0.710 0.835 0.844 0.832
Ev-NeRF 0.932 0.889 0.948 0.940 0.930 0.926 0.979 0.935SSIM ↑
Robust e-NeRF 0.958 0.897 0.971 0.953 0.934 0.923 0.981 0.945

E2VID + NeRF 0.277 0.277 0.289 0.341 0.406 0.282 0.337 0.316
Ev-NeRF 0.085 0.203 0.085 0.103 0.058 0.054 0.024 0.087LPIPS ↓
Robust e-NeRF 0.040 0.091 0.022 0.095 0.074 0.052 0.029 0.057

Table 6. Per-synthetic scene breakdown under the default setting.

E2VID + NeRF Ev-NeRF Robust e-NeRF (Ours) Target

c
h
a
i
r

d
r
u
m
s

f
i
c
u
s

Figure 5. Synthesized novel views on chair, drums and ficus under the default setting.
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Figure 6. Synthesized novel views on hotdog, lego, materials and mic under the default setting.
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Figure 7. Synthesized novel views with and without the target-normalized gradient loss ℓgrad .
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Figure 8. Synthesized novel views on the office-maze scene.



τ , ms
Statistics Metrics

% Seq. Duration Sparsity, × Equiv. # Views PSNR ↑ SSIM ↑ LPIPS ↓
0 0 1.000 336.8 30.24 0.958 0.040
8 0.2 4.176 80.66 30.41 0.959 0.042

25 0.625 8.440 39.90 29.84 0.958 0.041
50 1.25 13.50 24.95 29.20 0.953 0.046

100 2.5 21.27 15.83 27.40 0.938 0.060
250 6.25 40.80 8.255 25.95 0.916 0.081
500 12.5 67.77 4.970 24.08 0.900 0.102

1000 25 110.5 3.048 22.10 0.854 0.204
2000 50 209.6 1.607 17.05 0.762 0.398

Table 7. Robustness of our method to temporal event sparsity on the chair scene.
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Figure 9. Plot of novel view synthesis PSNR and degree of event sparsity on the chair scene against refractory period τ .
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Figure 10. Synthesized novel views on the chair scene under numerous refractory periods τ .


