
Appendix

A. Pseudocode of the Proposed Method
Algorithm 2 details the training procedure of the proposed framework for label-noise learning with intrinsically long-tailed

data.

Algorithm 2: The training process of the proposed learning framework

Input: Noisy training data D = {xi, ŷi}Ni=1

1 Initialize the model θ trained on D;
2 while e < MaxIterationNumber do
3 for c = 1 to M do
4 for i = 1 to |Dc| do
5 Obtain and store the feature fi and the prediction confidence pi for xi by model θ;
6 end
7 Calculate the average prediction confidence p̄c for class c;
8 end
9 for c = 1 to M do

10 Calculate the confidence thresholds Hc for class c by Equation (6);
11 Calculate the adaptive centroid oc for class c by Equation (5);
12 for i = 1 to |Dc| do
13 Calculate the additional weight W (xi) by Equation (2);
14 Calculate WJSD(xi) by Equation (3);
15 Calculate ACD(xi) by Equation (9);
16 end
17 Apply GMM with values of bi-dimensional metrics to all the samples in class c;
18 Adopt dimension selection for class c by Algorithnm 1;
19 Adopt cluster selection for selected dimension by Equation (10) to generate two sets Dclean

c and Dnoisy
c ;

20 end
21 Update the model θ by SSL training with Dclean as labeled data and Dnoisy as unlabeled data.
22 end

B. Proof of Theorem 1
Proof. Suppose xi and xj are two samples in class c, pci and qci are the c’s dimension of their prediction confidence pi =
[p1i , p

2
i , ..., p

M
i ] and pj = [p1j , p

2
j , ..., p

M
j ], respectively. Their common observed class label ŷ = [ŷ1j , ŷ

2
j , ..., ŷ

M
j ] is in the

one-hot form where only the value of the c’s dimension is 1 (ŷci = 1), and the values on other dimensions are all 0 (ŷdi = 0
for all d ̸= c). Jensen-Shannon Divergence (JSD) for sample xi is defined as:

JSD(xi) =
1

2
KL

(
pi

∥∥∥pi + ŷi
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)
(12)

=
1

2

∑
d ̸=c

pdi log
2pdi
pdi

+ pci log
2pci

pci + ŷci
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The base of logarithm is 2 for the above derivation. Then
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Now, for u ∈ (0, 1), let

f(u) = u log u− (u+ 1) log(u+ 1). (21)

The first- and second-order derivative of f(u) can be obtained by:
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It can be observed that f ′(u) < 0 and f ′′(u) > 0 that makes f ′(u) monotonically increase and |f ′(u)| monotonically
decrease. By Lagrange mean value theorem, if function f(u) is continuous and differentiable on the interval (0, 1), then
there is at least one point ξ between two real numbers a, b ∈ (0, 1):

|f(a)− f(b)| = |f ′(ξ)(a− b)| = |f ′(ξ)| · |a− b|. (25)

As ξ > a and |f ′(u)| monotonically decrease, we have:

|f ′(ξ)| · |a− b| ≤|f ′(a)| · |a− b| (26)
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By replacing f(u) by JSD(x), a by pci and b by pcj , we have:

|JSD(xi)− JSD(xj)| ≤
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C. The Correlation between Purity and Clean Ratio
To validate the promotion effect of purity on the separation of clean and noisy samples, we show the highest proportion

of clean samples for clusters obtained with different purity in the tail class with asymmetric noise. Fig. A1 describes the
relationship between purity and the proportion of clean samples in the cluster. It can be observed that there is a positive
correlation between purity and the proportion of clean samples in the cluster. Therefore, enhancing the purity of centroid can
effectively improve the separation ability of clean and noisy samples.
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Figure A1: The correlation between purity and clean ratio.

D. The Purity by High-Confidence Sample Set
In order to validate the effectiveness of our proposed high-confidence sample set in terms of purity improvement, we

compared the purity difference before and after the selection of high-confidence samples in CIFAR-10 with 0.4 asymmetric
noise and 0.01 imbalance factor. As shown in Fig. A2, the purity of all classes is significantly improved through the selection
of high-confidence samples, and the improvement of the tail class is more prominent. It illustrates the robustness of our
approach to the long-tail distribution.
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Figure A2: The purity difference before and after the selection of high confidence samples.

Dataset CIFAR-10 CIFAR-100

Noise Ratio 0.4

Imbalance Factor 0.1 0.01 0.1 0.01

baseline-clean 87.88 70.11 59.75 42.65
cRT-full 84.62 74.53 55.94 46.22

Table A1: Performance comparison with asymmetric noise and long-tail distribution.

E. The Effectiveness of Feature in Asymmetric Noise
In order to show why the feature is good enough to discriminate the sample under asymmetric noise, we retrain the

classifier using full clean samples (cRT-full) after fixing the features for the model trained under asymmetric noise with
long-tail distribution. Accordingly, we also use clean and long-tail distribution samples to train the model as a baseline for



Dataset CIFAR-10 CIFAR-100

Imbalance Factor 0.01

Noise Ratio (Sym.) 0.4 0.6 0.4 0.6

Baseline CE 47.81 28.04 21.99 15.51

LT
LA 42.63 36.37 21.54 13.14
LDAM 45.52 35.29 18.81 12.65
IB 49.07 32.54 20.34 12.10

NL DivideMix 32.42 34.73 36.20 26.29
UNICON 61.23 54.69 32.09 24.82

NL-LT

MW-Net 46.62 39.33 19.65 13.72
RoLT 60.11 44.23 23.51 16.61
HAR 51.54 38.28 20.21 14.89
ULC 45.22 50.56 33.41 25.69

Our TABASCO 62.34 55.76 36.91 26.25

Dataset CIFAR-10 CIFAR-100

Imbalance Factor 0.01

Noise Ratio (Asym.) 0.2 0.4 0.2 0.4

Baseline CE 56.56 44.64 25.35 17.89

LT
LA 58.78 43.37 32.16 22.67
LDAM 61.25 40.85 29.22 18.65
IB 56.28 42.96 31.15 23.40

NL DivideMix 41.12 42.79 38.46 29.69
UNICON 53.53 34.05 34.14 30.72

NL-LT

MW-Net 62.19 45.21 27.56 20.04
RoLT 54.81 50.26 32.96 -
HAR 62.42 51.97 27.90 20.03
ULC 41.14 22.73 34.07 25.04

Our TABASCO 62.98 54.04 40.35 33.15

Table A2: Performance comparison with synthetic noise and long-tail distribution. The best results are shown in bold.

comparison. Tab. A1 reports the accuracy of both approaches. It can be observed that the potential of the model under the
influence of noise and long-tail distribution is similar to the performance of the model trained directly under the clean and
long-tail distribution samples. It means that the model can still learn good features to distinguish between samples even under
the dual effects of the noise and long-tail distribution. It is also an important guarantee to use features to separate samples
under long-tail distribution and asymmetric noise.

F. More Experimental Results on CIFAR-10/100

In this section, we compare the performance of different methods with symmetric and asymmetric noise in 0.01 imbalance
factor, which is a more difficult scenario. Tab. A2 reports the accuracy of different methods in these settings. One of the
results of RoLT [49] is empty because the code does not run properly in this case. It can be observed that our proposed
method achieves the best performance in most cases, which further verifies the effectiveness of our method.

Dataset Red 10N 100N

Imbalance Factor ≈ 0.01 0.01

Noise Ratio 0.2 0.4 ≈ 0.4

Baseline CE 30.88 31.46 49.31 25.28

LT
LA 10.32 9.560 50.09 26.39
LDAM 14.30 15.64 50.36 30.17
IB 16.72 16.34 56.41 31.55

NL DivideMix 33.00 34.72 30.67 31.34
UNICON 31.86 31.12 59.47 37.06

NL-LT

MW-Net 30.74 31.12 54.95 31.80
RoLT 15.78 16.90 61.23 33.48
HAR 32.60 31.30 56.84 32.34
ULC 34.24 34.84 43.89 35.71

Our TABASCO 37.20 37.12 64.54 39.30

Table A3: Performance comparison with real-world noise and long-tail distribution. The best results are shown in bold.



G. More Experimental Results on Benchmarks

In this section, we compare the performance of different methods with realist noise in 0.01 imbalance factor, which is
a more difficult scenario. Tab. A3 reports the accuracy of different methods in these settings. It can be observed that our
proposed method achieves the best performance in all cases, which further verifies the effectiveness of our method.

H. The Observed and Intrinsic Distribution of Benchmarks

In this section, we plot the observed and intrinsic distribution of benchmarks we proposed in Fig. A3. We use benchmarks
with an imbalance factor of approximately 0.1 and a noise ratio of approximately 0.4 for our analysis. Relative ratio is denoted
by the ratio between the number of samples in each class and the minimum number of samples. It can be observed that the
intrinsic and observed distributions of all benchmarks are significantly different, and observed distribution is more balanced.
This means that it is difficult to focus on the intrinsic tail class and the tail class has a high percentage of noise, making it
more difficult to separate noise and clean samples in the intrinsic tail class. It also corresponds to the two key challenges of
the problem we present and demonstrates that our proposed benchmarks are a good measure of the effectiveness of different
approaches to the problem.
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Figure A3: The observed and intrinsic distribution of benchmarks.

I. More Sample Distribution on Bi-dimensional Separation Metric

In this section, we plot the values of bi-dimensional metrics of both clean and noisy samples for head and medium classes
under different noise types in Fig. A4. For the case of symmetric noise shown in Fig. A4 (a), it can be observed that both
WJSD and ACD can well separate clean and noisy samples in the head class, while ACD cannot effectively distinguish clean
samples from noisy samples in the medium class. In this case, WJSD shows its advantage in sample separation. For the
case of asymmetric noise shown in Fig. A4 (b), it can be observed that WJSD cannot distinguish clean samples from noisy
samples well for head and medium classes, while ACD can distinguish them well. It further validates the complementarity
of the bi-dimensional metrics.
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Figure A4: Scatter plot of the values of the proposed bi-dimensional metrics with (a) symmetric noise and (b) asymmetric
noise.



J. Hyperparameter Sensitivity Analysis
We investigate the impact of η for dimension selection. The results are shown in Fig. A5. We vary η from 0.4 to 0.8, and the

relative accuracy varies between -0.5% and 0.5%. When η is relatively large, more cases not suitable for WJSD separation are
WJSD separated, thus compromising the sample separation effect and leading to a decrease in model performance. Similarly,
when η is relatively small, cases suitable for WJSD separation are filtered out, affecting model performance. In general, there
is little variation in the accuracy of the model, so the dimension selection we proposed is robust for η.
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Figure A5: Impact of hyperparameter η.

K. Computational Cost Analysis
We compute the relative training cost of each method compared to the baseline on CIFAR-100, as presented in the Tab. A4.

By comparison, it is evident that the training cost of the proposed method is indeed higher but falls within an acceptable range.
Despite this higher cost, the proposed method offers remarkable performance gains in return.

Method MW-Net RoLT HAR DivideMix UNICON Proposed

Relative Cost ×2.60 ×2.06 ×1.48 ×2.28 ×2.54 ×4.49

Table A4: Relative training cost compared to the baseline.

L. Experimental Results across Classes
We conducted a performance comparison of different methods on CIFAR-100 with an imbalance factor of 0.1 and a

noise ratio of 0.4 under head, medium and tail classes in Fig. A6. It can be seen that our approach effectively improves the
performance of tail classes without sacrificing the performance of head classes. The underlying rationale behind is that the
proposed WJSD can effectively separate tail classes samples without affecting the separation of head classes, and ACD are
not solely focused on improving the tail classes.
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Figure A6: Line plot of the performance across classes with (a) symmetric noise and (b) asymmetric noise.


