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1. Implementation Details

The architectures of BEVPlace have been illustrated in

the main paper. Here we provide a more detailed imple-

mentation of the BEV image generation module, the group

convolution network, and the NetVLAD layer, as shown in

Fig. 1.

In the BEV image generation stage, we project the point

clouds into BEV images with a grid size of 0.4 meters.

Since the point cloud has been cropped into a [−20 m, 20
m] cubic window, the BEV image is of size 100x100.

In the group convolution network, we first warp the in-

put BEV image with rotation transforms sampled from the

rotation group. In our implementation, we sample evenly

in the rotation group with an interval of 45◦. Then, we fed

the warped images into a vanilla CNN network. For each

local group feature in the output feature maps, we use two

group convolution branches and bilinear pooling to extract

group equivariant local features. The configuration of the

CNN and the group convolution layers are listed in Table

1. “Conv(output channels, kernel size, stride)” denotes a

convolutional layer. “AvgPool(kernel size, stride)” denotes

an average pooling layer. For more insights into the group

feature design, please refer to [4].

Table 1. Group convolution Network Architecture.

Layer Operations

CNN

Conv(16,5,1)-InstanceNorm-Relu

Conv(32,5,1)-InstanceNorm-Relu-AvgPool(2,2)

Conv(32,5,1)-InstanceNorm-Relu

Conv(32,5,1)-InstanceNorm-L2Norm

Group Conv1
Conv(64,1,1)-Relu

Conv(8,1,1)

Group Conv2
Conv(64,1,1)-Relu

Conv(16,1,1)

In NetVALD, the global rotation invariant feature is ob-

tained by aggregating the local features. In the inference

stage, We apply principal component analysis (PCA) to re-

duce the feature dimension to 256.

2. Dataset Details
We evaluate the methods on the KITTI dataset [2], the

ALITA dataset [7], and the benchmark dataset [1] in the

main paper. The dataset partition of KITTI has been intro-

duced in the main paper. We show the dataset details of the

other two in the following.

ALITA dataset. The validation set of ALITA contains 6

sequences that have varying degrees of view change. Since

each sequence has only a few point clouds, we merge all the

sequences into one for a more challenging evaluation. After

that, we obtain a validation set with 666 point clouds in the

database and 1750 frames for query. The test set of ALITA

contains 5623 point clouds. We generate all the global fea-

tures and upload them to the website1. The recall rate at

Top-1 calculated by the web server is used for performance

comparison in the main text. Different from the KITTI

dataset in which the point clouds are single frames, the point

clouds of ALITA are submaps cropped from a global map.

Thus, the point clouds are more evenly distributed in the 3D

space.

Table 2. Number of queries for training and testing on the bench-

mark dataset.

Train Test

Oxford 21711 3030

U.S. - 1972

R.A. - 1579

B.D. - 991

Benchmark dataset. The benchmark dataset contains

four subsets including the Oxford RobotCar dataset, a uni-

versity sector (U.S.), a residential area (R.A.), and a busi-

ness district (B.D.). In our experiment, we only use the

Oxford RobotCar dataset for training. We split the dataset

following [1] and list the number of queries for training and

testing in Table 2. Similar to ALITA, the point clouds of the

Oxford RobotCar dataset are also submaps generated from

multiple LiDAR scans.

1https://www.aicrowd.com/challenges/icra2022-general-place-

recognition-city-scale-ugv-localization
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Figure 1. Detailed implementation of BEVPlace. We first generate the BEV image from the query point cloud. Then we extract group

equivariant features through the group convolution network. The global rotation-invariant feature is obtained based on NetVLAD. Feature

dimension reduction is achieved through PCA in the inference time.

3. Additional results on KITTI and discussions

Qualitative results of place retrieval. In addition to

the quantitative results of place recognition in the main pa-

per, we provide some qualitative examples in Fig. 2. We

randomly select a query from each evaluation sequence of

KITTI. Then, we display the query BEV image along with

its Top-1, Top-5, Top-10, Top-15, and Top-20 retrieved re-

sults. For better visualization, we plot the location of each

query in the reference map on the right. We use different

colors to indicate the feature distance between the global

feature of the query and the ones of all the other point

clouds. Note that all the point clouds in the database have

been randomly rotated and are sampled every 2 meters. It

can be seen that, for each query, the Top-1 (red circle) and

Top-5 (blue circle) matches correctly overlap with the target

location (black circle), which demonstrates that our global

feature has strong distinctiveness and good robustness to ro-

tations.

More evaluation metrics of loop closure detection. In

the main paper, we evaluate the precision-recall curve of

loop closure detection on the KITTI dataset. Here, we fur-

ther evaluate the average precision (AP) and F1 max score.

Table. 3 shows that our method outperforms the compared

methods with large margins in both metrics on all the se-

quences.

Correlation modeling between the geometry and the
feature spaces. Fig. 3 shows the mapping relationship of

different methods between the geometry and the feature dis-

tances on all the evaluation sequences of KITTI. We also

plot the fitting curve using the modeling function, i.e. Eq.

(5) in the main paper. It can be seen that our model can ac-

curately depict the relationship between the geometry and

the feature distances with specific parameters as denoted in

each plot.

Distance estimation error on more sequences. Fig. 4

shows the fitted distribution of the distance errors of the

methods on KITTI. Our method has lower errors on all the

sequences and consequently achieves more accurate posi-

tion estimation performance as shown in Fig. 7 of the main

paper.
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Figure 2. Visualizations of example retrieval results of BEVPlace on the KITTI dataset. For each sequence, we randomly choose a query
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coded. All the retrievals are performed under random rotations to demonstrate the robustness of our method.
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Figure 3. Geometry distance and feature distance relationship of the point clouds in the evaluation sequences of KITTI. We also plot the

fitting curve based on the mapping model and give the fitting parameters α, β, and γ.
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Figure 4. Distance estimation error distribution of the evaluation sequences on the KITTI.
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