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A. Overview

This supplementary document provides more discus-

sions, implementation details, and further results that ac-

company the paper:

• Section B explains the uniqueness of our method by

discussing another message embedding setting.

• Section C introduces the workflow of our CopyRN-

eRF from watermarked color representation building,

to customized rendering, and finally to copyright veri-

fication.

• Section D presents the implementation details of our

method, including the network architecture and the

training process.

• Section E provides additional results, including ad-

ditional visual results, qualitative results for Table 4

of the main paper, and quantitative results for more

lengths of raw bits.

B. Uniqueness of our method

As well as our proposed CopyRNeRF, we have discussed

several strategies for protecting the copyright of implicit

scene representation constructed by NeRF in our main pa-

per: 1) directly build an implicit representation using water-

marked 2D images, and 2) watermark the representation by

using the copyright message as a part of the input. Besides

their limitations discussed in our main paper, for 1), if the

copyright message is to be changed, the whole representa-

tion needs to be trained again, which is time-consuming.

We additionally discuss another setting in this document:

why not directly watermark the synthesized 2D images with
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Figure S1: When directly watermarking the synthesized 2D

images with novel views, the model weights are not pro-

tected. Anyone who stoles the 3D representation may gen-

erate 2D images without watermarks by skipping the water-

marking network.

novel viewpoints? As outlined in Figure S1, such setting

does not protect the model itself. When the model is stolen

by malicious users, the unwatermarked rendering images

can be easily generated from the stolen model.

Instead, with our watermarked color representation and

distortion-resistance rendering, the model weights are pro-

tected. If malicious users produce images by different ren-

dering strategies, the copyright of our model can still be

protected.

C. Workflow of CopyRNeRF

We would like to introduce more details about the work-

flow of our CopyRNeRF. A more concise diagram is illus-

trated in Figure S2 of this supplementary. The represen-

tation creator can create the implicit representation based

on our descriptions in the main paper. Then, as outlined

in Figure S2, the copyright of core model is protected by

watermarking messages. Although malicious users can syn-

thesize images with novel viewpoints by applying different

rendering approaches to the core model, our method can
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Figure S2: Illustration of workflow of our CopyRNeRF. The creator applies CopyRNeRF to generate a core model from a set

of 2D images. Even if the model is stolen and different rendering approaches are applied, the model creator can still use the

message extractor to reveal the message from the rendered results to verify the copyright.
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Figure S3: More illustrations of our method. Our method contains five MLPs and one CNN-based network for different

purposes. The two MLPs Θσ and Θc are used to output the geometry σ and the colors c. The watermarked color represen-

tation module uses two MLPs, Eξ and Dφ to obtain the color feature field and message feature field, respectively, and then

generates message representation by a feature fusion module Gψ . A CNN-based message extractor Hχ is employed to reveal

the message from 2D rendered images.

still ensure that all synthesized images with novel view-

points are watermarked. Moreover, the trained message

extractor can be directly applied to reveal the message

from the synthesized images, even when different render-

ing strategies, distortions, and viewpoints are encountered.

D. Implementation details

D.1. Network architecture

As outlined in Figure S3, our method contains five MLPs

for different purposes. A MLP Θσ with 256 channels is

used to map the position to geometry value and an interme-

diate feature the medium generation, an then a three-layer

MLP Θc is applied to output the base colors c.

The module for building watermarked color representa-

tion contains three MLPs. Color feature encoder Eξ is a

three-layer MLP to embed c queried from Θc, coordinates

x, and viewing directions d to 256-dimensional color fea-

tures. Message feature encoder Dφ is a two-layer MLP to

extract features from messages. After that, a feature fusion

module Gψ is realized by a three-layer MLP to generate the

watermarked color from the color feature field and message

feature field.

Our message extractor Hχ is with a CNN-based struc-

ture [4]. A convolutional layer, a normalization layer, and

a ReLU activation function are combined as a base block.

The message extractor contains 8 base blocks with 64 fil-

ters each and one last block with Nb filters, where Nb is



(a) PSNR=32.69, Bit accuracy=100% (b) PSNR=30.07, Bit accuracy=100%

(c) PSNR=30.28, Bit accuracy=100% (d) PSNR=31.68, Bit accuracy=100%

Figure S4: Additional visual results of different scenes. The message length is set to 8. We show the differences between the

synthesized results and the ground truth from multi-views. From left to right: ground truth, CopyRNeRF , difference (×10).

the length of message. A pooling layer is applied to get

the average of each dimension and a linear layer is used to

produce the final extracted message M̂ with the dimension

Nb.

D.2. Training process

The training process consists of three stages. In the first

stage, we optimize Θσ and Θc to get geometry values of

the scene according to Lrecon. The second stage aims to

learn a color feature encoder Eξ, a message feature encoder

Dφ, and a feature fusion moduleGψ to build a watermarked

color representation. Meanwhile, a message extractorHχ is

trained to extract the message from the 2D images rendered

by distortion-resistant rendering module. In every train-

ing loop, a random camera pose in boundary and a random

message M of dimension Nb are chosen. The content loss

Lcontent is calculated by the rendered results from medium

representation and message representation of the same cam-

era pose. The message loss Lm is the mean squared error

between embedded message M and the extracted message

M̂. The parameters ξ, φ, ψ, χ are optimized with the objec-

tive functions Lcontent and Lm. In the last training stage,

we finetune the message extractorHχ withEξ,Dφ, andGψ
frozen to further improve the bit accuracy.

In every training loop, all the messages in {0, 1}Nb have

the same probability of being randomly selected, ensuring

the consideration of all 2Nb messages. When the model

is prepared to be shared, a secret message M in {0, 1}Nb

should be chosen by the model creator as the invisible copy-

right identity. The results show that our proposed CopyRN-

eRF can achieve a good balance between bit accuracy and

error metric values.
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Figure S5: Visual quality comparisons for our full model,

our model without Message Feature Field (MFF) and our

model without Color Feature Field (CFF).

E. Additional results

E.1. Visual results for CopyRNeRF

We present more qualitative results on Blender

dataset [3] and LLFF dataset [2], as shown in Figure S4.

Our method clearly reaches a high bit accuracy while main-

taining the high-quality novel view synthesis.

E.2. Qualitative results for Table 4

We have discussed the effectiveness of message feature

field and color feature field of CopyRNeRF (Section 5.2 of

our main paper). We further provide the qualitative evalu-

ations in Figure S5 of this document. We first remove the

color feature field and directly combine the color compo-

nent with the message features, and then remove the mes-

sage feature field and combine the message directly with the

color feature field. In both cases, the models perform poorly

in preserving the visual quality of the rendered results.

E.3. Quantitative results for more bit lengths

In this section, we display results for more lengths of raw

bits. The results of bit accuracy and reconstruction quality

for 8 bits, 16 bits, 32 bits, and 48 bits are shown in Table 1,



Table 2, Table 3, and Table 4, respectively.
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Table 1: Bit accuracies and reconstruction qualities compared with our baselines. ↑ (↓) means higher (lower) is better. We

show the results on Nb = 8 bits. The results are averaged on all all examples. The best performances are highlighted in bold.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

Proposed CopyRNeRF 100% 30.28 0.934 0.037

HiDDeN [4]+NeRF[3] 50.25% 27.75 0.926 0.034

MBRS [1]+NeRF [3] 51.38% 29.09 0.929 0.020

NeRF with message 63.19% 20.26 0.691 0.117

CopyRNeRF in geometry 68.00% 17.61 0.638 0.147

Table 2: Bit accuracies and reconstruction qualities compared with our baselines. ↑ (↓) means higher (lower) is better. We

show the results on Nb = 16 bits. The results are averaged on all all examples. The best performances are highlighted in

bold.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

Proposed CopyRNeRF 91.16% 26.29 0.910 0.038

HiDDeN [4]+NeRF[3] 50.19% 26.53 0.917 0.035

MBRS [1]+NeRF [3] 50.53% 28.79 0.925 0.022

NeRF with message 52.22% 22.33 0.773 0.108

CopyRNeRF in geometry 60.16% 20.24 0.771 0.095

Table 3: Bit accuracies and reconstruction qualities compared with our baselines. ↑ (↓) means higher (lower) is better. We

show the results on Nb = 32 bits. The results are averaged on all all examples. The best performances are highlighted in

bold.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

Proposed CopyRNeRF 78.08% 26.13 0.896 0.041

HiDDeN [4]+NeRF[3] 50.11% 26.24 0.913 0.038

MBRS [1]+NeRF [3] 49.80% 28.38 0.921 0.025

NeRF with message 50.00% 20.13 0.682 0.122

CopyRNeRF in geometry 54.86% 18.07 0.710 0.143

Table 4: Bit accuracies and reconstruction qualities compared with our baselines. ↑ (↓) means higher (lower) is better. We

show the results on Nb = 48 bits. The results are averaged on all all examples. The best performances are highlighted in

bold.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

Proposed CopyRNeRF 60.06% 27.56 0.895 0.066

HiDDeN [4]+NeRF[3] 50.04% 26.16 0.908 0.043

MBRS [1]+NeRF [3] 50.14% 28.24 0.918 0.031

NeRF with message 51.04% 22.12 0.837 0.125

CopyRNeRF in geometry 53.36% 23.71 0.871 0.092


