Supplementary Material of Harvard Glaucoma Detection and
Progression: A Multimodal Multitask Dataset and
Generalization-Reinforced Semi-Supervised Learning

Table 1: Performance of different supervised methods
on the cross-sectional data with single modality RN-
FLT for the glaucoma detection task on the released
1,000 glaucoma detection data.

Model Acc? F11 AUC?tH
VGG [3] 0.80 0.79 0.86
ResNet [] 0.84 0.83 0.87
ResNext [7] 0.82 0.81 0.89
WideResNet [6] 0.83 0.84 0.89
EfficientNet|[7] 0.8 0.85 0.90
ConvNext [5] 0.80 0.79 0.86
ViT [] 0.65 0.67 0.75
Swin [10] 0.74 0.73 0.78

1. Implementation Detail for Supervised
Benchmarks

For the optimization, we use AdamW optimizer [!]
and train all the supervised models with 20 epochs
throughout all the experiments. We use learning rate
2e-5 and weight decay le-5 with a batch size of 12 for
all the supervised classification models for all methods
in supervised progression forecasting and glaucoma de-
tection benchmarks. All supervised classification mod-
els are trained using BCE loss. For ViT, we used their
ViT-B-16 architecture. For EfficientNet, we use their
EfficientNetV2-S architecture. For Swin transformer,
we use their Swin-base architecture. For ResNet, we
use their ResNet50 architecture. For VGG, we use
their VGG-11 architecture. For ResNeXt, we use their
ResNeXt-101 64x4d architecture. For WiderResNet,
we use their Wide ResNet-50-2 architecture. For Con-
vNeXt, we use their ConvNeXt Tiny architecture. We
initialize all models with pre-trained imagenet weights.
All code is written in PyTorch [2] and we use one RTX
A6000 GPU for all experiments.

2. Supervised Benchmarks on Released
Data

In Tablel, we show the supervised classification re-
sults for the glaucoma detection task with multi-
ple SOTA supervised CNN and transformer baseline

methods, including VGG [3], ResNet [4], ResNext [5],
WideResNet [6], EfficientNet [7], ConvNext [8], ViT
[9], and Swin Transformers [10]. This cross-sectional
benchmark is conducted on our future cross-sectional
data release with 1,000 patients upon acceptance, of
which 800 patients are used for training and the re-
maining 200 are used for testing. To the best of our
knowledge, this is the largest supervised glaucoma de-
tection benchmark with 3D OCT imaging data (i.e.,
RNFLT). Such large-scale public 3D OCT dataset will
encourage researchers to build clinically effective (3D
OCT source data) and efficient (post-processed 2D RN-
FLT map from the 3D data) glaucoma CAD systems.
As shown in the table, transformed-based architec-
tures tend to obtain worse performance than CNN-
based architectures, and we articulate this due to that
transformed-based architectures are often data-hungry
and require a relatively larger amount of training data.
EfficientNet is the best-performing method, followed
by WideResNet and ResNext.

2.1. Data Density Distribution
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(a) Pairwise Pearson Correlation

Figure 1: The pointwise similarity between RNFLT
maps within the same label groups versus the point-
wise similarity between RNFLT maps between differ-
ent label groups.

(b) Pairwise Pearson Correlation

As shown in Fig. 1, the density distribution of
correlations between RNFL thickness (RNFLT) maps
within groups of glaucoma and non-glaucoma is largely
overlapped with the one between RNFLT maps be-
tween glaucoma and non-glaucoma groups. The same
is observed for progression versus non-progression.
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