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In this Appendix, we provide details omitted in the main
paper, due to space limitations, including: a) an algorithm
summarizing the dynamic plane update procedure; b) extra
implementation details; c) more experimental results and
visualizations.

A. Dynamic Plane Update
Here we summarize the dynamic plane update procedure

(main paper Section.3.3), which is described in our main
paper Section.3.3, in Algorithm. 1.

Algorithm 1 PE Generation and Update
Input: constructed 3D plane P, image features X, camera param-
eters T , decoder depth L.
Output:

1: for l← 0 to L− 1 do
2: P2d

l = Project (Pl, T )
▷ <Eq.(1)>

3: Mp = Scatter Mean(src = Pl, idx = P2d
l )

▷ M ∈ R3×H×W , <Eq.(2)>
4: PE = MLP(Mp)
5: [∆θx,∆h] = MLP(AvgPool(G([X,Mp])))
6: ▷ G: convolution layers, <Eq.(3)>
7: P̃T

l+1 = D · P̃T
l ▷D is from Eq.(4)

8: ▷ update plane P, <Eq.(5)>
9: end for

B. Implementation Details
Set Prediction. We cast the 3D lane detection (Sec.3.5)
and the auxiliary instance segmentation (Sec.3.2) as a set
prediction problem. To enable consistent label assignment
for both tasks (Sec.3.5), we adopt a dice-based matching
score for label assignment, introduced in [3]. The ground
truths for each input are padded with ∅ up to N , where N
indicates the prediction lane count. For i-th prediction and
j-th ground truth, their matching score is defined as:

Si,j = p1−α
i,cj

· dice(m̂i,mj)
α (1)
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where cj denotes the category label for j-th ground-truth
lane. pi,cj denotes the probability for the category cj of i-th
prediction. m̂i and mj represent the masks of i-th predic-
tion and j-th ground-truth lane respectively. dice is the dice
coefficients [6] of segmentation masks. The weight of α
balances the importance of classification and segmentation
tasks and is set to 0.8, as in [3]. Then the optimal one-to-one
matching is acquired using the Hungarian algorithm [7].
Auxiliary Loss. Our auxiliary segmentation loss comprises
three components: objectness, segmentation, and classifica-
tion, organized as:

Laux = λo · Lobj + Lmask + λc · Lcls,

Lmask = λdice · Ldice + λbce · Lbce

(2)

where Lobj is a BCELoss for objectness, Lcls is focal
loss [5] for lane classification that uses the same γ and α
as the 3D lane classification (Sec.3.5), and Lmask is com-
posed of the dice loss [6] and pixel-wise BCELoss for the
foreground and background balance purpose. In our exper-
iments, we adopt the following setup: λo = 1.0, λc = 2.0,
λdice = 2.0 and λbce = 5.0.

C. More Experiment Results
We further conduct more ablation studies of the architec-

ture on OpenLane-300 val set, aligning with the main paper
ablation setting.

C.1. More Ablations

Number of Decoder Layers. Our LATR uses the Trans-
former decoder for 3D lane detection. By varying the num-
ber of decoder layers, we found that increasing the number
of layers from 2 to 8 improved the F1 score from 68.7 to
70.9 (Tab. 1). We use a six-layer decoder as the default,
following [1, 4]. However, we observed that using a two-
layer decoder achieves comparable performance to the de-
fault six-layer version, leading us to adopt a two-layer de-
coder as our lite version LATR-Lite for higher efficiency.
Notably, our LATR-Lite significantly improves efficiency
and effectiveness compared to the previous SoTA, as shown
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Figure 1: More visualizations on OpenLane val set. Rows (a), (b), (c) illustrate the ground truth lanes, predictions generated
by LATR and Persformer [2], respectively. The lanes are projected onto 2D images and different colors in the images
represent specific categories in OpenLane. Missed lanes are indicated by arrows with dashed lines, while existing lanes are
indicated by arrows with solid lines. In row (d), we compare the ground truths (red) and the predictions of our LATR (green)
in 3D space. Best viewed in color (zoom in for details.)

in Tab. 2. While employing nearly half the parameters,
LATR-Lite not only achieves a twofold increase in FPS but
also exhibits a notable enhancement in F1 score, with an
impressive improvement of +8.5.

F1 / C.Acc. X error (m) Z error (m)# Layers near | far near | far

2 68.7 / 90.9 0.260 | 0.324 0.097 | 0.130
4 69.9 / 92.3 0.257 | 0.325 0.097 | 0.133
6 70.4 / 92.9 0.241 | 0.321 0.097 | 0.132
8 70.9 / 93.0 0.257 | 0.329 0.098 | 0.134

Table 1: Ablation study on number of decoder layers.

Input Sizes. Image resolution is a key factor that influences
performance. To study the impact of different input shapes,
we compared four resolutions, as detailed in Tab 3. Notably,
the F1 score demonstrates improvement with increasing in-
put size. This observation is consistent with our intuitive
expectations, as larger images containing finer details can
enhance the accuracy of lane location detection.

C.2. Model Complexity.

To comprehensively evaluate the performance of our
proposed LATR, we compared its model parameters and
FPS with those of the previous state-of-the-art model [2], as
shown in Tab 2. Experimental results reveal that our model,
LATR, achieves a superior F1 score of 61.9 and a frame rate
of 11.34 FPS, outperforming Persformer, which exhibits a
lower F1 score of 53.0 and operates at 6.92 FPS. Notably,
our LATR-Lite significantly improves efficiency and effec-
tiveness compared to Persformer, despite using almost half
the number of parameters. Specifically, we achieve a more

than twofold increase in FPS, while obtaining a remarkable
+8.5 improvement in F1 score. The F1 results are compared
on OpenLane val set.

Model Backbone # Params FPS GPU Cost F1
360× 480

Persformer Efficient-B7 54.94 M 11.48 2.16GB 50.5
Persformer Res50 62.54 M 9.96 2.24GB 52.6
LATR Res50 44.35 M 12.63 2.28GB 58.6

720× 960
Persformer Res50 63.19 M 6.92 3.00GB 53.0
LATR-Lite Res50 38.78 M 17.75 2.26GB 61.5
LATR Res50 44.35 M 11.34 2.55GB 61.9

Table 2: Model complexity. All models are tested on single
A100 GPU and AMD EPYC 7351@2.60GHz CPUs. The
reported F1 scores are based on OpenLane val set, aligning
with the main results in the main paper.

Input Size F1 / C.Acc. X error (m) Z error (m)
near | far near | far

360× 480 63.8 / 90.4 0.310 | 0.384 0.113 | 0.161
480× 640 67.4 / 92.1 0.262 | 0.346 0.100 | 0.140
720× 960 70.4 / 92.9 0.241 | 0.321 0.097 | 0.132
960× 1280 71.2 / 92.9 0.253 | 0.315 0.096 | 0.129

Table 3: Ablation study on input size.

C.3. Visualizations

We present additional qualitative analysis in Fig. 1, high-
lighting differences using arrows of different colors. This
analysis demonstrates that LATR can produce more accu-
rate and robust 3D lane results.
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