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Supplementary Materials
The supplementary document is organized as follows:

• Sec. A provides in-depth discussions of our motivation
and further analyze its necessity and significance.

• Sec. B elaborates the technical details of our frame-
work ImAM, including model architectures, data pre-
processing, training procedures and implementation of
competitors.

• Sec. C reports details of evaluation metrics used in our
paper, and insightful discussions about the improved
COV metric with a threshold (CovT).

• Sec. D investigates more results of conditional genera-
tion tasks as well as baselines, demonstrating the pow-
erful versatility of faithful and diverse shape genera-
tion with various conditioning inputs

• Sec. E shows more visualizations of unconditional and
conditional generation, further proving the superiority
of our model in versatile 3D shape generation.

• Sec. F discusses the broader impact, limitation and fu-
ture work of this paper.

A. Motivation of ImAM
A.1. What Is the ‘Ambiguity’ in AR Models?

Formally, ‘ambiguity’ appears in the order of a series
of conditional probabilities, which affects the difficulty of
likelihood learning, leading to approximation error of the
joint distribution. Critically, in the second stage of AR
models, it requires sequential outputs, autoregressively pre-
dicting the next code conditioned on all previous ones.
Thereby, the order of the flattened sequence determines
the order of conditional probabilities (Eq. 5 and 6 in the
main paper). Although some methods (e.g. position em-
bedding [18]) can be aware of positions of codes, it can-
not eliminate approximation error caused by the condition
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Figure 1: Illustration of auto-regressive generation for tri-
planar representation. Here, we show three different flat-
tening orders as examples.

order. Notably, this ‘ambiguity’ phenomenon is also dis-
cussed in [8] (Fig. 47). Figure 1 illustrates how the flat-
tening order affects the way of autoregressive generation.
For grid-based representation, it is ambiguous if the flatten-
ing order along axes is x-y-z, z-x-y or other combinations.
Similarly, the flattening order for tri-planar representation
is ambiguous, e.g., p (zxz) p (zxy|zxz) p (zyz|zxz, zxy),
p (zyz) p (zxz|zyz) p (zxy|zyz, zxz) or others.

A.2. Effect of Flattening Orders

We first investigate how the flattening order affects the
quality of shape generation. This study takes tri-planar
representation as an example (‘Tri-Plane’ for short), since
our improved discrete representation (‘Vector’) can nat-
urally degenerate into ‘Tri-Plane’ by removing the pro-
posed coupling network. As illustrate in Fig. 1, different
flattening order will affect different auto-regressive gener-
ation order of the three planes. Quantitatively, we con-



METRICS METHODS
CATEGORIES

Plane Rifle Chair Car

ECD ↓
Tri-Plane

Iter-A 744 405 4966 3599
Iter-B 3501 36 1823 4735
Iter-C 3098 282 4749 3193

Vector (ours) Row-Major 236 65 27 842
Col-Major 205 79 102 980

1-NNA ↓
Tri-Plane

Iter-A 73.67 68.35 78.15 87.16
Iter-B 83.37 56.54 70.92 87.42
Iter-C 81.83 65.61 78.38 88.53

Vector (ours) Row-Major 59.95 57.28 57.31 76.58
Col-Major 62.48 57.70 58.38 78.09

COV ↑
Tri-Plane

Iter-A 81.70 75.10 79.33 65.31
Iter-B 74.16 75.52 82.95 63.97
Iter-C 71.32 76.69 78.89 72.25

Vector (ours) Row-Major 79.11 74.26 80.81 73.25
Col-Major 77.87 73.52 81.03 71.31

CovT ↑
Tri-Plane

Iter-A 43.51 41.56 23.10 50.30
Iter-B 26.57 49.78 35.50 49.43
Iter-C 30.28 41.35 24.94 51.23

Vector (ours) Row-Major 45.12 55.27 49.82 56.64
Col-Major 44.87 53.58 48.93 56.63

MMD ↓
Tri-Plane

Iter-A 3237 3962 3392 1373
Iter-B 3860 3624 3119 1404
Iter-C 3631 3958 3430 1385

Vector (ours) Row-Major 3124 3628 2703 1213
Col-Major 3102 3623 2707 1214

Table 1: The effect of flattening order on different discrete
representations. Here, we take unconditional generation as
an example and train one model per class. Please find statis-
tic and qualitative analyses in Fig. 2 and 3, respectively.

sider three variants to learn joint distributions of tri-planar
representation without loss of generality, Iter-A: p (z) =
p (zxz) · p (zxy|zxz) · p (zyz|zxz, zxy), Iter-B: p (z) =
p (zxy) · p (zxz|zxy) · p (zyz|zxy, zxz) and Iter-C: p (z) =
p (zyz) · p (zxz|zyz) · p (zxy|zyz, zxz).

Results are presented in Tab. 1 and Fig. 2. As observed,
different orders have significant impact on performance, re-
sulting in a large value of standard deviation. For instance,
Iter-A achieves a better result on Plane category (Iter-A:
73.67 vs. Iter-B: 83.37 on 1-NNA), while for Rifle, it prefers
the order of Iter-B (Iter-B: 56.54 vs. Iter-A: 68.35 on 1-
NNA). We attempt to explain this phenomenon by visualiz-
ing projected shapes on three planes. As illustrated in Fig. 3,
for Plane category (First Column), the projection onto the
xy-plane provides limited shape information, while the xz-
plane reveals more representative geometries of the aircraft.
We agree that if the xz-plane that contains more shape in-
formation is generated first, the generation of subsequent
planes may be much easier. Consequently, it is beneficial
for Iter-A to generate more faithful 3D shapes than Iter-B. In
contrast, Rifle and Chair exhibit more details on xy-plane,
so the autoregressive order of Iter-B yields better results for
these two categories. In addition, we notice that Car has
a relatively simple shape, e.g., a cuboid, leading to simi-
lar impacts on the generation quality for different flattening
orders.

Figure 2: Statistic analysis of the effect of flattening order.
We report mean and standard deviation as histogram and
error bar, respectively. Best viewed in color and zoom in.
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Figure 3: Visualizations of projected shapes on three planes.

A.2. Efficacy of Improved Discrete Representation

In this section, we further evaluate the advantage of our
improved discrete representation in terms of efficacy and ef-



Figure 4: Comparisons of the first-stage IoU (%) accuracy
and the second-stage memory cost (Mb) with different res-
olutions and discrete representations. The memory cost is
calculated with a batch size of 1.

ficiency. We explore two variants of our full model by flat-
tening coupled feature maps into vectors with row-major
or column-major order. In Tab. 1, our proposed method
achieves similar well performance even with different se-
rialization orders. Figure 2 shows that our standard devi-
ation is significantly lower than ‘Tri-Plane’, demonstrating
the robustness of our improved representation to generation
orders. The proposed coupling network has facilitated AR
learning by introducing more tractable order. Additionally,
the overall quality of synthesized shapes for all categories
are balanced and excellent across all metrics, indicating the
superiority of our design.

Furthermore, we also investigate the advantage of low
computation overhead. We use ‘Vector’ to denote our de-
sign since we apply vector quantization to latent vector,
and ‘Grid’ refers to the baseline method that applies vec-
tor quantization to volumetric grids. Figure 4 compares the
performance of IoU at the first stage and the corresponding
memory cost in the second stage. Since we cannot afford
the training of transformers with volumetric grid represen-
tations, as an alternative, we report the first-stage IoU ac-
curacy for comparisons. From Fig. 4, two conclusion can
be drawn. (1) The resolution r of feature grids (‘Grid’ and
‘Vector’) significantly affects the quality of reconstructed
shapes. If r is too small, it lacks the capacity to represent
intricate and detailed geometries (Grid Reso-32: 88.87 v.s
Grid Reso-16: 81.12). However, if r is large, it will in-
evitably increase the computational complexity in the sec-
ond stage, since the number of required codes explodes as
r grows (Grid Reso-32: ≥ 80G v.s Grid Reso-16: 19.6G).
(b) Our proposed ‘Vector’ representation not only achieves
comparable reconstruction results (Vector Reso-32: 88.01
v.s Grid Reso-32: 88.87), but also significantly reduces
the computation overhead (Vector Reso-32: 3.8G v.s Grid

Reso-32: ≥ 80G).

A.3. Inference Speed

For unconditional generation, the wall time ImAM takes
to sample a single shape is roughly 14 seconds, and we can
also generation 32 shapes in parallel in 3 minutes.

B. Technical Details on ImAM
B.1. Model Architectures

Our proposed framework ImAM consists of a two-step
procedure for 3D shape generation. The first step is an
auto-encoder structure, aiming to learn discrete represen-
tations for input 3D shapes. And the second step introduces
a transformer structure to learn the joint distribution of dis-
crete representations. Below we will elaborate the details of
these two structures.
Auto-encoder. As shown in the left of Fig. 5, the auto-
encoder takes as input point clouds P ∈ Rn×3 with n means
the number of points, and outputs the predicted 3D mesh
M. More concretely, the encoder starts by feeding point
clouds into a PointNet [15] with local pooling, results in
point features with dimensions Rn×32. Then, we project
points on three axis-aligned orthogonal planes with resolu-
tion of 256. Features of points falling into the same spatial
grid cell are aggregated via mean-operation, so that input
point clouds are represented as tri-planar features instead
of volumetric features. To further improve the representa-
tion, we concatenate three feature planes and couple them
with three convolution layers. Next, four stacked convolu-
tion layers are adopted to not only down-sample the feature
resolution three times, but also highly encode and abstract
the position mapping of each spatial grid in 3D space. Thus,
the output has a tractable order to be serialized as a feature
vector. Before we perform the vector quantization on the
flattened outputs, we follow [22] to utilize the strategy of
low dimensional codebook lookup, by squeezing the fea-
ture dimension from 256 to 4. Consequently, an arbitrary
3D shape can be represented with a compact quantized vec-
tor, whose elements are indices of those closest entries in
the codebook.

The decoder is composed of two 2D U-Net modules and
one symmetric upsample block. After reshaping the quan-
tized vector and unsqueezing its feature dimension from 4 to
256, we apply a 2D U-Net module to complement each spa-
tial grid feature with global knowledge. Subsequently, the
same number of 2D convolution layers as the downsmaple
block are appended to upsample the feature resolution back
to 256. Symmetric convolution layers further decouple it
into tri-planer features. To further improve the smoothness
between the spatial grids in each plane, we use the other
shared 2D U-Net module to separately process tri-plane fea-
tures. The structures of both 2D U-Net are in alignment
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Figure 5: The architectures of ImAM, consisting of an auto-encoder at the first stage (left) and a transformer at the second
stage (right).

with [12]. Finally, we build a stack of fully-connected resid-
ual blocks with 5 layer, as implicit function, to predict the
occupancy probability of each query position.

Transformer. Benefiting from the compact discrete rep-
resentation with a tractable order for each input 3D shape,
we adopt a vanilla decoder-only transformer without any
specific-designed module to learn the joint distributions
among discrete codes. Our transformer consists of T
decoder layers, each of which has one multi-head self-
attention layer and one feed-forward network. The decoder
layer has the same structure as [8], and is illustrated in the
right of Fig. 5. Specifically, we use a learnable start-of-
sequence token ([SOS] token) to predict the first index of
the discrete vector, and auto-regressively predict the next
with the previous ones. For example, given an input con-
taining the first t indices along with one [SOS] token, we
first use an embedding layer to encode them as features.
Then, we feed them into several transformer layers. The
position embedding is also added to provide positional in-
formation. At the end of the last transformer layer, we use
two fully-connected layers to predict the logit of each token.
However, we only keep the last one which is a meaningful
categorical distribution for the next (t+1)-th index.

Implementation Details. Table 2 summarizes all param-
eter settings for both auto-encoder and transformer struc-
tures. We apply them as default to all experiments unless
otherwise stated. The feature dimension d in the trans-
former varies for different tasks. We set d = 512 for
unconditional generation; 768 for class-guide generation
and partial point completion; and 1024 for image- or text-
guide generation. We set the number of transformer lay-
ers T = 12 for all tasks, except for text-guide generation,
where we set L = 24 and h = 16. Lower triangular mask
matrix is used in all multi-head self-attention layers to pre-
vent information leakage, that is, the prediction of the cur-

rent index is only related to the previous known indices.
For various conditioning inputs, we adopt the most common
way to encode them. For example, we use a learnable em-
bedding layer to get the feature ∈ R1×768 of each category.
Gvien partial point clouds, our proposed auto-encoder en-
codes them into discrete representations ∈ R1024×1, which
are fed into another embedding layer to get features with
768 dimensions. We adopt pre-trained CLIP models to ex-
tract features ∈ R1×512 for images or texts, and further use
one fully-connected layer to increase the dimension from
512 to 1024; All of encoded conditioning inputs are simply
prepended to [SOS] token via concatenation to guide the
generation.

B.2. Training and Testing Procedures

Training: All models are trained on a single NVIDIA 3090
or A100, without any learning rate decay strategy. For the
first stage, we take dense point clouds with n = 30, 000
as input, and train the auto-encoder with 13 categories on
ShapeNet dataset for total 600k iterations. The learning rate
is set as 1e-4, and the batch size is 16. Once trained, it is
shared for all generation tasks. For the second stage, we
adopt the same learning rate to train the transformer. Ex-
cept for the partial point completion which has the batch
size of 2, we set the batch size of 8 for the other generation
tasks. Models for all experiments are trained for around
600k iterations.
Testing: During inference, we first use the well-trained
transformer to predict discrete index sequences with or
without conditioning inputs. For each index, we sample it
with the multinomial distribution according to the predicted
probability, where only the top-k indices with the highest
confidence are kept for sampling. We progressively sample
the next index, until all elements in the sequence are com-
pleted. Then, we feed the predicted index sequence into the



Table 2: The detailed architecture of our framework. ‘k’, ‘s’
and ‘p’ denote kernel size, stride and padding, respectively,
in the convolution layer. ‘h8’ means the number of head is 8
in multi-head self-attention layer. The feature dimension d
in the transformer varies for different tasks. m stands for the
dimension of middle layer in the feed-froward network. ‘K’
and ‘L’ are the sequence length of conditioning inputs and
discrete representation, ‘1’ indicates the length of [SOS] to-
ken.

Layer Name Notes Input Size

Auto-encoder
PointNet n× 3
Coupler

ConvLayer k3s1p1 256× 256× 3× 32
ConvLayer k3s1p1 256× 256× 96
ConvLayer k1s1p0 256× 256× 32

Downsampler
ConvLayer k2s2p0 256× 256× 32
ConvLayer k2s2p0 128× 128× 64
ConvLayer k2s2p0 64× 64× 128
ConvLayer k1s1p0 32× 32× 256

Squeezer k1s1p0 32× 32× 256
Quantizer 32× 32× 4
Unsqueezer k1s1p0 32× 32× 4
2D U-Net 32× 32× 256
Upsampler

DeconvLayer k3s1p1 32× 32× 256
DeconvLayer k3s1p1 64× 64× 128
DeconvLayer k3s1p1 128× 128× 64
ConvLayer k1s1p0 256× 256× 32

Decoupler
ConvLayer k3s1p1 256× 256× 32
ConvLayer k3s1p1 256× 256× 96
ConvLayer k1s1p0 256× 256× 96

2D U-Net 256× 256× 3× 32

Transformer
Embedding Layer (1 + L)× 1
Decoder Layers × 12

Self-Attention h8 (K + 1 + L)× d
Feed-Forward m4d (K + 1 + L)× d

Head Layer
LinearLayer L × d
LinearLayer L × d

decoder to get tri-planar features. Subsequently, we interpo-
late feature of each point on a grid of resolution 1283 from
tri-planar features, and adopt the implicit function to query
the corresponding occupancy probability. Finally, the iso-
surface of 3D shapes are extracted with threshold of 0.2 via
Marching Cubes [11].

B.3. Data Preparation

We give a more detailed explanation of data preparation.
We conduct all the experiments on ShapeNet dataset [3].

Following previous works [6, 14, 12], we use 13 classes
of ShapeNet dataset from 3D-R2N2 [7]. The data are pro-
cessed similarly to C-OccNet [14]. Following the same set-
ting from IM-GAN[6] and GBIF[9], for each category, we
sorted the shapes by name and select the first 80% as train-
ing samples and the rest for testing. For the task of shape
completion, partial point clouds are obtained following the
similar strategy in [23]. Specifically, during training, we
randomly select a viewpoint and then remove the 25 ∼ 75%
furthest points from the viewpoint to obtain partial point
clouds. 2048 points are further sampled to guarantee the
fixed number of partial points as inputs. For a fair com-
parison, we follow AutoSDF [13] to devise a new comple-
tion setting, by removing all the points from the top half of
shapes. For the task of image-guide generation, we use ren-
dered images provided by 3D-R2N2[7]. For text-guide gen-
eration task, we use Text2Shape dataset [5] with the same
data splitting.

B.4. Implementation of Competitors

We select several representative works to verify the ef-
fectiveness of our method on five tasks (i.e., T1: uncondi-
tional generation, T2: class-guide generation, T3: partial
point completion, T4: image-guide generation, T5: text-
guide generation). These works follow the priority criteria
such as whether they have similar motivation, whether they
conduct similar tasks, whether they release source codes,
and so on. Here, we list all codebases used in our paper.

• IM-GAN [6] (T1): https://github.com/
czq142857/implicit-decoder

• GBIF [9] (T1,T2): https://gitlab.
vci.rwth-aachen.de:9000/mibing/
localizedimplicitgan

• PointFlow [21] (T1): https://github.com/
stevenygd/PointFlow

• ShapeGF [2] (T1): https://github.com/
RuojinCai/ShapeGF

• PVD [24] (T1,T3): https://github.com/
alexzhou907/PVD

• AutoSDF [13] (T2,T3,T4,T5): https://github.
com/yccyenchicheng/AutoSDF

• cGAN [19] (T3): https://
github.com/ChrisWu1997/
Multimodal-Shape-Completion

• ShapeFormer [20] (T3): https://github.com/
QhelDIV/ShapeFormer

• Clip-Forge [16] (T4,T5): https://github.com/
AutodeskAILab/Clip-Forge

• ITG [10] (T4): https://github.com/liuzhengzhe/
Towards-Implicit-Text-Guided-Shape-Generation
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https://github.com/stevenygd/PointFlow
https://github.com/RuojinCai/ShapeGF
https://github.com/RuojinCai/ShapeGF
https://github.com/alexzhou907/PVD
https://github.com/alexzhou907/PVD
https://github.com/yccyenchicheng/AutoSDF
https://github.com/yccyenchicheng/AutoSDF
https://github.com/ChrisWu1997/Multimodal-Shape-Completion
https://github.com/ChrisWu1997/Multimodal-Shape-Completion
https://github.com/ChrisWu1997/Multimodal-Shape-Completion
https://github.com/QhelDIV/ShapeFormer
https://github.com/QhelDIV/ShapeFormer
https://github.com/AutodeskAILab/Clip-Forge
https://github.com/AutodeskAILab/Clip-Forge
https://github.com/liuzhengzhe/Towards-Implicit-Text-Guided-Shape-Generation
https://github.com/liuzhengzhe/Towards-Implicit-Text-Guided-Shape-Generation


Among them, we slightly modify codes of GBIF and Au-
toSDF for class-guide generation. Specifically, GBIF de-
signs a generator to synthesize shape embeddings from a
random noise, and a discriminator to determine whether the
input embedding is real or fake. Thus, we improve it into
a conditional GAN by additionally adding a class embed-
ding as input to both the generator and discriminator. Au-
toSDF is also an auto-regressive model, it has the same two
stages as our ImAM, including an auto-encoder and a trans-
former. Similar to our model, we prepend a class token to
the [SOS] token, making AutoSDF be able to perform class-
guide generation. Except for these two cases, we either use
their provided models or re-train them with official codes if
necessary for fair comparisons.

C. Evaluation Metrics
C.1. Implementation Details

As a generator, the key to evaluate our proposed method
is not only to measure the fidelity, but also to focus on the di-
versity of the synthesized shapes. Therefore, we adopt eight
metrics for different generation tasks, including Coverage
(COV) [1], Minimum Matching Distance (MMD) [1], Edge
Count Difference (ECD) [9] and 1-Nearest Neighbor Accu-
racy (1-NNA) [21], Total Mutual Difference (TMD) [19],
Unidirectional Hausdorff Distance (UHD) [19], Fréchet
Point Cloud distance (FPD) [17] and Accuracy (Acc.) [16].
In particular, we use the Light Field Descriptor (LFD) [4] as
our primary similarity distance metric for COV, MMD and
ECD, as suggested by [6]. Since both FPD and Acc. met-
rics require a classifier to calculate, we thus train a PointNet
1 with 13 categories on ShapeNet datasets, which achieves
the classification accuracy of 92%.

For shape generation task, COV and MMD measures the
diversity and fidelity of the generated shapes, respectively.
Both suffer from some drawbacks [21]. FPD and Acc. mea-
sures the fidelity of the generated shapes from the viewpoint
of feature space and probability, respectively. On the con-
trary, ECD and 1-NNA measure the distribution similarity
of a synthesized shape set and a ground-truth shape set in
terms of both diversity and quality. Therefore, ECD and 1-
NNA are two more reliable and important metrics to quan-
tify the shape generation performance. For shape comple-
tion tasks, TMD is meant to the diversity of the generated
shapes for a partial input shape, and UHD is proposed to
evaluate the completion fidelity. Both metrics are specifi-
cally designed for the completion task [19].

C.2. Coverage with threshold

As discussed above, Coverage [1] measures the diversity
of a generate shape set. However, it doesn’t penalize out-

1https://github.com/jtpils/TreeGAN/blob/master/
evaluation/pointnet.py

liers since a ground truth shape is still considered as cov-
ered even if the distance to the closest generated shape is
large [21]. To rule out the false positive coverage, we count
as match between a generation and ground truth shape only
if LFD [4] between them is smaller than a threshold t. In
practice, t could vary across different semantic categories
based on the scale and complexity of the shape, and we em-
pirically use MMD [1] as the threshold. In this paper, we
set t as mean MMD of all competitors.

To evaluate the effectiveness of the improved COV in
identifying correct matches, we visualize the matched pairs
with the largest MMD before and after using threshold fil-
tering. As shown on the left of Fig. 6, when there is no
threshold constraining the quality of the generated shape,
outliers (e.g., a messy shape) could match any possible
ground-truth shape, which is clearly unreasonable. On the
contrary, when the threshold is applied for filtering, as illus-
trated on the right of Fig. 6, the generated shape has certain
similarity in texture or parts with the matched ground-truth
shape, even if they have the maximum shape distance. It
strongly demonstrates the validity and reliability of our im-
provement in measuring the diversity of generation.

D. More Experimental Analysis
D.1. More Baselines on Image-guide Generation

To further evaluate the effectiveness of ImAM on image-
guide generation, we compare it with AutoSDF [13], which
is also an auto-regressive model for 3D shape generation.
We follow its official codes to extract per-location con-
ditionals from the input image and then guide the non-
sequential auto-regressive modeling to generate shapes. On
the contrary, our method only utilize a single image feature
extracted from ResNet or CLIP, guiding the vanilla trans-
former, to auto-regressively synthesize shapes. As shown
in Tab. 3, ImAM beats AutoSDF on three metrics by a large
margin, which clearly suggests the effectiveness of our pro-
posed method. In addition, AutoSDF requires a specific
form of conditioning inputs, but our approach can accept
input in either 1- or 2-D form, giving it more flexibility. To
verify it, we conduct a baseline by using ViT32 to extract
patch embeddings from the input image as condition. The
conditional generation can be achieved by simply prepend-
ing patch embeddings to [SOS] token. Results in Tab. 3
indicate that it is competitive with models using ResNet or
CLIP as feature extractor, further suggesting the powerful
versatility of our ImAM in either generative ways or condi-
tional forms.

D.2. More Baselines on Text-guide Generation

Different images, texts have a natural form of sequence.
Each word is closely related to its context. Thereby, we
further discuss the ability of ImAM to text-guide genera-

https://github.com/jtpils/TreeGAN/blob/master/evaluation/pointnet.py
https://github.com/jtpils/TreeGAN/blob/master/evaluation/pointnet.py
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Table 3: Results of image-guide generation with more base-
lines.

METHOD TMD (×102) ↑ MMD (×103) ↓ FPD ↓

AutoSDF [13] 2.523 1.383 2.092
Clip-Forge [16] 2.858 1.926 8.094
Ours (ViT32) 3.677 1.617 2.711
Ours (ResNet) 4.738 1.662 3.894
Ours (CLIP) 4.274 1.590 1.680

tion conditioned on sequence embeddings. Concretely, we
adopt BERT and CLIP 2 model to encode texts into a fixed
length of sequence embeddings. From Tab. 4, we find that
using sequence embeddings indeed boost the performance
of ImAM for text-guide generation task. Thanks to our pro-
posed compact discrete representation with more tractable
orders, our ImAM can be easily adapted to different condi-
tional forms for different tasks, thus improving the quality
of the generated shapes.

E. More Qualitative Results
E.1. More Visualizations of Generated Shapes

We show qualitative comparisons of unconditional gen-
eration in Fig. 7. Our ImAM can generate more faithful

2In this case, we output features of all tokens instead of the last [END]
token as the text embedding.

Table 4: Quantitative results of text-guide generation.

METHOD TMD (×101) ↑ MMD (×103) ↓ Acc ↑

ITG [10] N/A 2.187 29.13
AutoSDF [13] 0.342 2.165 36.95
CLIP-Forge [16] 0.400 2.136 53.68
Ours (BERT) 0.677 1.931 60.68
Ours (CLIP-seq.) 0.524 1.778 58.17
Ours (CLIP) 0.565 1.846 59.93

and diverse shapes of multiple categories. Comprehensive
visualizations of generated shapes are illustrated in Fig. 8.
ImAM can generate shapes with fine geometric structures
(e.g., airplanes and cars), as well as some shapes with com-
posite or hollowed-out designs (e.g., tables and chairs). One
major key is that it enjoys the advantages of more compact
discrete representations while endowing tractable orders to
learn shape priors of complicated geometries.

Moreover, we show more synthesized samples of class-
guide generation in Fig. 9, partial point completion in
Fig. 10, image-guide generation in Fig. 11, and text-guide
generation in Fig. 13. ImAM can generates high-quality
shapes not only being faithful to the given conditions, but
also showing large imagination on diversity, which signifi-
cantly indicates a more unified ability to freely turn uncon-
ditional generation into conditional generation.



E.2. Image-guide Generation in Real-world

To further investigate the application of ImAM on real-
world image-guide generation, we show more synthesized
shapes by given images captured in the real world. We use
the same model as described in Sec. 4.4 of the manuscript.
As illustrated in Fig. 12, results on five categories suggest
that our model can sensitively capture major attributes of
objects in the image. Take the first two rows as examples,
ImAM can generate plausible shapes while being faithful
to objects in images. In addition, two airplane images in
Fig. 12 show that our synthesized samples enjoy the advan-
tage of diversity by partially sticking to the major attributes,
such the types of wings and tail.

E.3. Zero-shot Text-to-shape Generation

Figure 14 shows more qualitative results of zero-shot
text-to-shape generation. Specifically, our model is trained
on multiple pairs of image and shapes, and directly take
text conditions as input during inference, as the same set-
ting in [16]. The high-quality of synthesized shapes clearly
demonstrate the powerful versatility of our proposed ImAM
in 3D shape generation, showing great potential to the real-
world applications.

F. Broader Impact and Limitation
Broader Impact. Synthesizing high quality 3D content has
strong application in the fields of AR/VR, graphics, robotics
and metaverse. In the past, creating high quality 3D content
requires great effort from professional designers and also
a great amount of time. Our work ImAM can serve as a
tool for automatically generating high quality 3D shapes,
providing convenience for 3D designers to create more so-
phisticated 3D content. However, at the same time, special
care must be taken not to infringe the copyright of other 3D
content creators during the process of data collection for our
model training.
Limitation. Despite we have made huge effort in adopt-
ing an efficient 3D representation in our model, ImAM still
inherit the limitation of auto-regressive model. The infer-
ence time is relatively consuming, since it requires multi-
ple forward operations to generate one sample. Besides, the
way of auto-regression may suffer from the problem of error
accumulation. In particular, if conditioning inputs contain
some noise, it is very fragile to synthesize incorrect shapes,
or even collapsed ones. In future work, we will explore
more efficient auto-regressive architectures and representa-
tions to overcome these limitations.
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Figure 8: More visualization of unconditional generation on 5 categories.
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Figure 9: More qualitative comparisons of class-guide generation.



ShapeFormercGAN PVDInput: Ours

Figure 10: More qualitative comparisons of multi-modal partial point completion on 3 categories.



CLIP-ForgeInput: Ours

Figure 11: More qualitative comparisons of image-guide generation.



Figure 12: More qualitative results of image-guide generation from real-world data.



C
LI

P-
Fo

rg
e

Te
xt

 p
ro

m
pt

s:
O

ur
s

A
 c

ou
ch

 
w

ith
 a

rm
s

A
 c

ha
ir

 
w

ith
 a

rm
s

A
 c

ha
ir

 w
ith

 
sq

ua
re

 le
gs

A
 ta

bl
e 

w
ith

 
4 

th
in

 le
gs

Fi
gu

re
13

:
M

or
e

qu
al

ita
tiv

e
co

m
pa

ri
so

ns
of

te
xt

-g
ui

de
ge

ne
ra

tio
n.

M
od

el
s

ar
e

tr
ai

ne
d

on
Te

xt
2S

ha
pe

da
ta

se
tw

hi
ch

on
ly

in
cl

ud
es

tw
o

ca
te

go
ri

es
,i

.e
.,

ch
ai

ra
nd

ta
bl

e.



CLIP-ForgeText prompts: Ours

A Jet
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A louge chair

A street lamp

Figure 14: More qualitative results of zero-shot text-to-shape generation. Results of CLIP-Froge are reported in their paper.


