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1. Overview
In the supplementary material, we first provide a com-

prehensive account of imaging model in section 2, elucidat-
ing the variances in the PSF based on different parameters.
Then We expound on the test set employed in the simula-
tion experiments of this paper in section 3. Additionally,
detailed discussion and comparison of simulation experi-
ments at lower exposures are presented in Section 4. Ulti-
mately, additional results of ADIS’s reconstruction from the
real acquisitions are illustrated in section 5.

2. Detailed process of imaging model

     

  

  

  

  

  

     

 

 

  

    

 

  

     

 

 
 

                 

Figure 1. Simplified schematic of the ADIS’s profile

Imaging forward model. We now consider a multi-slit
aperture comprising N × N parallel rectangular apertures,
with each rectangular aperture having a width of a, a length
of b, and a center-to-center distance between adjacent slits
of d. The Fraunhofer diffraction formula, a fundamental
calculation method in optics, is utilized to characterize the
diffraction phenomenon when light passes through an aper-
ture. When light passes through a finite-sized aperture, it
generates a series of interference and diffraction patterns
within the far-field region. The Huygens-Fresnel principle
states that each point on a wave surface can be treated as a
new secondary wave source, and the wave surface can be
considered as a superposition of spherical waves emitted by
an infinite number of point sources.

Linear systems possess an essential characteristic known
as the principle of superposition, which asserts that the re-
sulting output of a linear system, when multiple input sig-

nals are applied, is the linear superposition of these input
signals. This principle is applicable to the phenomenon of
aperture mask diffraction, wherein each aperture behaves
as a point source. The waves emanating from every point
source combine constructively and destructively to produce
the output wave of the entire aperture. This process of wave
superposition is linear, implying that the spatial distribu-
tion of the output wave corresponds to the superposition
of waves generated by all point sources as the number of
apertures increases. Consequently, each rectangular aper-
ture in the aperture mask can be viewed as a point source,
and the waves produced by all point sources can be added
coherently to yield the diffraction pattern across the entire
aperture mask.

The initial form of Fraunhofer diffraction is:
Ep = c

∫
A

eikrdA (1)

Considering a single square hole mask with a width of a
and a length of b, we can write its imaging distribution on
the Fourier surface as:

Ep = c

b∫
0

a∫
0

eik(r0+x sinϕ+y sin θ)dxdy (2)

Therefore, for a multi-slit mask comprising N ×N par-
allel rectangular apertures, we can write the diffraction for-
mula as follows:

Ep = ceikr0

 b∫
0

eiky sin θ1dy + · · ·+
(N−1)d+b∫
(N−1)d

eiky sin θ1dy


×

 a∫
0

eikx sin θ2dx+ · · ·+
(N−1)d+a∫
(N−1)d

eikx sin θ2dx


(3)

Calculated to get:

Ep = ceikr0
eikb sin θ1 − 1

ik sin θ1
× 1− eikNd sin θ1

1− eikd sin θ1

× eika sin θ2 − 1

ik sin θ2
× 1− eikNd sin θ2

1− eikd sin θ2

(4)
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Figure 2. Illustrations of the test set and the rendering of the generated measurements

To simplify the parameters, let:

β1 =
1

2
kb sin θ1, β2 =

1

2
ka sin θ2,

γ1 =
1

2
kd sin θ1, γ2 =

1

2
kd sin θ2

(5)

Ep = ceikr0ab
e2iβ1 − 1

2iβ1
× 1− e2iNγ1

1− e2iγ1

× e2iβ2 − 1

2iβ1
× 1− e2iNγ2

1− e2iγ2

(6)

Then we get:

Ep = E0
sinβ1

β1

sinNγ1
sin γ1

sinβ2

β2

sinNγ2
sin γ2

(7)

Since focusing is performed under paraxial conditions,
the formula sin θ1 ≈ tan θ1 = xm

f2
, sin θ2 ≈ tan θ2 = ym

f2
:

I(xm, ym, λ) = I0 ·D(xm, ym, λ) · P (xm, ym, λ) (8)

D(xm, ym, λ) = sin c2(
πb

λf2
xm) sin c2(

πa

λf2
ym) (9)

P (xm, ym, λ) =

[
sin(N πd

λf2
xm)

sin( πd
λf2

xm)

]2

×

[
sin(N πd

λf2
ym)

sin( πd
λf2

ym)

]2

(10)

Where the formula D(xm, ym, λ) is the diffraction factor
describes the diffraction effect of each rectangular square
hole. P (xm, ym, λ) is the interference factor describes the
effect of multi-slit interference. (xm, ym) denotes the spa-
tial coordinates on the receiving screen, while f2 denotes
the distance between the diffraction array and the sensor.

Finally, we get the formula under orthogonal aperture
diffraction:

I = I0

(
sinβ1

β1

)2(
sinNγ1
sin γ1

)2(
sinβ2

β2

)2(
sinNγ2
sin γ2

)2

(11)

Figure 3. The intensity distribution of light on the x-axis for vari-
ous mask parameters is represented by the red curve.

Mask with different b/d. According to Equation 8, the
contrast in intensity between the zero-order diffraction and
the first-order diffraction is entirely reliant on the ratio be-
tween the aperture opening and the spacing of the square
holes. To simulate different ratios, we designed masks and
present the simulation results under various aperture mask
parameters (b/d) in Figure 3. After comparing the diffrac-
tion patterns, we selected the parameter values of d = 10
and a = b = 5 for the mask. This aperture mask exhibits a
first-order diffraction intensity that is half of the zero-order
diffraction and a second-order diffraction that is precisely
situated in the suppressed region, creating a missing order.

3. Test set of simulation experiment

Here we show our test set of 10 scenes selected from the
KAIST [11] dataset as depicted in Figure 2. The 256*256



Figure 4. Qualitative comparison of reconstruction results of different algorithms at low exposure. Zoomed-in patches of the HSI in the
fuchsia box are presented in the lower-left of the figure.

Algorithms S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg
21.43 23.89 19.87 18.82 20.72 22.08 21.16 28.51 28.40 22.31 22.72U-Net [1] 0.8162 0.8157 0.7554 0.5626 0.7269 0.7800 0.7894 0.8505 0.7493 0.7965 0.764
24.35 25.54 21.53 25.14 19.37 24.85 23.94 28.65 23.53 19.68 23.66HSCN+ [2] 0.8074 0.8078 0.7313 0.7932 0.6931 0.8063 0.7795 0.8615 0.6281 0.7324 0.764
22.42 25.62 20.72 19.49 23.38 23.68 24.43 29.21 30.43 22.50 24.19HDNet [3] 0.8502 0.8428 0.7964 0.6112 0.7958 0.8157 0.8193 0.8730 0.8328 0.8342 0.807
25.18 26.49 22.57 20.99 18.34 24.94 24.45 30.03 29.44 22.92 24.54BIRNAT [4] 0.8664 0.8533 0.7990 0.7376 0.7467 0.8297 0.8267 0.8884 0.7918 0.8365 0.818
22.87 27.16 22.69 25.74 19.08 23.85 25.45 30.22 30.27 23.27 25.06MIRNet [5] 0.7794 0.8375 0.7735 0.7848 0.7285 0.8149 0.8061 0.8908 0.8024 0.8139 0.803
29.65 27.19 24.67 24.70 24.89 25.61 26.65 31.16 33.79 23.72 27.20lambda-Net [6] 0.8943 0.8323 0.8052 0.5535 0.7772 0.7412 0.8056 0.8711 0.8998 0.8167 0.800
29.25 29.84 25.68 29.12 26.99 27.58 26.63 32.74 33.45 26.63 28.79MPRNet [7] 0.9167 0.9157 0.8925 0.8897 0.8799 0.8782 0.8604 0.9723 0.9030 0.9096 0.897
29.58 29.22 25.88 28.18 27.65 27.60 27.55 32.76 34.25 25.49 28.82TSA-Net [8] 0.9240 0.9028 0.8833 0.8757 0.8834 0.8792 0.8633 0.9232 0.8981 0.8826 0.892
32.52 30.76 26.24 28.68 28.01 28.24 25.81 33.31 36.24 27.45 29.70MST++ [9] 0.9426 0.9175 0.9076 0.8911 0.8959 0.9067 0.8793 0.9387 0.9309 0.9248 0.914
32.86 30.57 26.99 29.85 28.26 28.52 28.78 33.76 36.46 26.68 30.32Restormer [10] 0.9555 0.9303 0.9133 0.8969 0.9073 0.9095 0.8925 0.9436 0.9371 0.9277 0.921
34.18 33.47 29.20 30.76 30.79 30.53 29.36 35.84 38.55 28.87 32.16CSST-9stg (Ours) 0.9623 0.9632 0.9477 0.9178 0.9296 0.9450 0.9056 0.9630 0.9610 0.9461 0.944

Table 1. Quantitative comparison of reconstruction results of different algorithms at low exposure, PSNR (dB) and SSIM are reported.

measurements that can be generated from the 586*586*28
HSI by PSF. Meanwhile, to improve the visualization of the
ADIS dispersion pattern, we perform RGB interpolation to
render the measurements.

4. Simulation Experiments (Low Exposure)
Unlike the main text’s simulation experiments conducted

with regular exposure, here, the measurements’ amplitude is
scaled down to approximately one-fourth of the original to
simulate varying exposure conditions. Similar to [8, 12, 13,
14, 15, 16, 17], 28 wavelengths are selected from 450nm to
650nm and derived by spectral interpolation manipulation
for the HSI data.

Simulation Dataset. We adopt two datasets, i.e., CAVE-

1024 [8] and KAIST [11] for simulation experiments.
The CAVE-1024 consists of 205 HSIs with spatial size
1024×1024 obtained by interpolating and splicing from the
CAVE [18] dataset. The KAIST dataset contains 30 HSIs of
spatial size 2704×3376. 10 scenes from the KAIST dataset
are selected for testing, while the CAVE-1024 dataset and
another 20 scenes from the KAIST dataset are selected for
training.

Implementation Details. The dispersion step of the pri-
mary diffraction is 0.5 spatial pixels, while the simulation
experiment is deployed in the range of 400nm to 670nm,
which means that 586× 586× 28 data cubes are needed to
generate 256×256 resolution measurements for conducting
experiments while preserving the tertiary diffraction. We
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Figure 5. Additional results of ADIS’s reconstruction from the real acquisitions

implement CSST by Pytorch. All CSST models are trained
with Adam [19] optimizer (β1 = 0.9 and β2 = 0.999) using
Cosine Annealing scheme [20] for 300 epochs on an RTX
3090 GPU. The initial learning rate is 4× 10−4.

Quantitative Analysis. Table 1 compares the re-
sults of CSST and 10 methods including one baseline
method(Unet [1]), six reconstruction methods(lambda-
Net [6], HDNet [3], BIRNAT [4], TSA-Net [8],
HSCNN+ [2] and MST++ [9]), three Super-resolution al-
gorithms (Restormer [10], MPRNet [7], MIRNet[5]) on 10
simulation scenes at low exposure. CSST shows the best
experimental results on the ADIS spectral reconstruction
task, i.e., 32.16dB in PSNR and 0.944 in SSIM. CSST-
9stg significantly outperforms two recent SOTA methods
Restormer and MST++ by 1.84dBdB and 2.46dB, demon-
strating stronger reconstruction performance compared to
previous methods under low exposure conditions and ro-
bustness against exposure variations.

Qualitative Analysis. Figure 4 illustrates the compar-
ative performance of our CSST and other methods in the
HSI reconstruction of ADIS on the same scene at low ex-
posure. Visual inspection of the image reveals that the
CSST-9stg method provides more intricate details, sharper
textures, and well-defined structures. Conversely, the pre-
vious approaches produce either overly smooth results that
compromise the underlying structure or introduce color arti-
facts and speckled textures. Moreover, the lower left corner
of the figure presents the spectral profile of the intensity-
wavelength corresponding to the fuchsia square.

5. Additional real reconstruction results

Here we further show the reconstruction outcomes of
various scenes captured by ADIS in the figure 5. These
results exhibit distinct textures and well-structured edges,
thereby corroborating the efficacy of ADIS in snapshot sub-
super pixel resolution spectral imaging.
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