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A. Dataset Construction

For effective transformation, several requirements are
needed: (1) Random label set for each task, in which the
data stream length of each task can be different; (2) Random
timeline for each label set, in which the debut of each task
can be any time between the first access of the former and
latter tasks. For simplicity, we omit all blank time that all
data streams are unavailable.

• Parallel Split EMNIST (PS-EMNIST): We split EM-
NIST (62 classes) into 5 tasks and randomly generate 3
label sets for each task and 3 timelines for each label
set (say 9 different situations). The size of the label set
for each task is set to {12, 12, 12, 13, 13}.

• Parallel Split CIFAR-100 (PS-CIFAR-100): We split
CIFAR-100 into 10 tasks and randomly generate 3 label
sets for each task and 3 timelines for each label set. The
size of the label set for each task is set to 10.

• Parallel Split ImageNet-TINY (PS-ImageNet-TINY):
We split it into 10 tasks w.r.t. random 3 label sets, and
each label set has 3 randomly generated timelines. The
size of the label set for each task is set to 20.

B. Proof of Lemma 1 on AGD

As an asymmetric metric, the proposed Asymmetric Gra-
dient Discrepancy (AGD) measure needs to satisfy the two
features in Lemma 1.

Proof: Given three arbitrary gradients x, y and z, and
assume that at least one gradient is non-zero, we have

(1) If x = y, D(x,y) = 0.
(2) Positivity: If x 6= y, then ‖x− y‖ 6= 0, and we have

D(x,y) =
‖x− y‖

‖y‖+ ‖x− y‖
> 0.
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(3) The triangle inequality:

‖x− z‖
‖z‖+ ‖x− z‖

=
‖x− y + y − z‖

‖z‖+ ‖x− y + y − z‖

≤ ‖x− y‖+ ‖y − z‖
‖z‖+ ‖x− y‖+ ‖y − z‖

=
‖x− y‖

‖z‖+ ‖x− y‖+ ‖y − z‖
+

‖y − z‖
‖z‖+ ‖x− y‖+ ‖y − z‖

≤ ‖x− y‖
‖z‖+ ‖x− y‖+ ‖y − z‖

+
‖y − z‖

‖z‖+ ‖y − z‖

≤ ‖x− y‖
‖y‖+ ‖x− y‖

+
‖y − z‖

‖z‖+ ‖y − z‖
.

(1)

(4) Asymmetric: D(x,y) =
‖x− y‖

‖y‖+ ‖x− y‖
, and

D(y,x) =
‖x− y‖

‖x‖+ ‖x− y‖
. Thus, it is obvious that

D(x,y) = D(y,x) is not always satisfied when x 6= y
and depends on the magnitude ‖x‖ and ‖y‖ .

Therefore, the proposed AGD is an asymmetric metric.
�

C. Proof of Corollary 1
Let us review the definition of AGD:

D̂(x,y) =
‖x− y‖

‖y‖+ ‖x− y‖
. (2)

D̂(x,y) represents the gradient influence from x to y. The
nature of this asymmetric measure is the norm effect should
only be from gradient difference ‖x− y‖ to ‖y‖ rather than
to both ‖x‖ and ‖y‖. That is, the discrepancy should only
depend on the ratio ‖x−y‖‖y‖ , which can be further reduced to

‖x− y‖
‖y‖

=

√
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos∠x,y

‖y‖

=

√(
‖x‖
‖y‖

)2

− 2
‖x‖
‖y‖

cos∠x,y + 1.

(3)
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It is easy to know that

‖x− y‖
‖y‖+ ‖x− y‖

= 1− 1

1 + ‖x−y‖‖y‖

. (4)

Because ‖x−y‖‖y‖ ≥ 0, D̂(x,y) ∈ [0, 1].
In the paper, we illustrate the proposed AGD is an asym-

metric measure of gradient discrepancy because D̂(x,y)
brings a tolerance when ‖x‖ � ‖y‖ instead of the absolute
difference between them. To analyze the values of gradi-
ent discrepancy measure D regarding ‖x‖‖y‖ , we consider the
following asymmetric limits with ‖y‖ 6= 0:

• lim ‖x‖
‖y‖→∞

D: When ‖x‖ � ‖y‖, the conflict should

be large from x to y;

• lim ‖x‖
‖y‖→0

D: When ‖x‖ � ‖y‖, the conflict is accept-

able to some extend and should approach a tolerance
value that less than lim ‖x‖

‖y‖→∞
D.

We show the two limits for different discrepancy measures in-
cluding Cosine Similarity, Euclidean Distance, Normalized
Euclidean Distance, and AGD.
Cosine Similarity: Using the Cosine Similarity to measure
the discrepancy has no relevance to the magnitude difference.

lim
‖x‖
‖y‖→0

1− x>y

‖x‖‖y‖

= lim
‖x‖
‖y‖→∞

1− x>y

‖x‖‖y‖

= 1− cos∠x,y.

(5)

Euclidean Distance: When ‖y‖ 6= 0, we have

1

1 + ‖x− y‖
=

1

1 + ‖y‖ · ‖x−y‖‖y‖

. (6)

Thus, we have

lim
‖x‖
‖y‖→0

1− 1

1 + ‖x− y‖
=

‖y‖
1 + ‖y‖

, (7)

lim
‖x‖
‖y‖→∞

1− 1

1 + ‖x− y‖
= 1. (8)

When ‖x‖‖y‖ → 0, by using the Euclidean Distance highly
depends on ‖y‖, which makes it unpredictable.
Normalized Euclidean Distance: When ‖y‖ 6= 0, we have

lim
‖x‖
‖y‖→0

‖x− y‖
‖x‖+ ‖y‖

= lim
‖x‖
‖y‖→0

‖x−y‖
‖y‖

‖x‖
‖y‖ + 1

= 1, (9)

lim
‖x‖
‖y‖→∞

‖x− y‖
‖x‖+ ‖y‖

= lim
‖x‖
‖y‖→∞

√(
‖x‖
‖y‖

)2
− 2 ‖x‖‖y‖ cos∠x,y + 1

‖x‖
‖y‖ + 1

= lim
‖x‖
‖y‖→∞

√√√√2 cos∠x,y + 2(
‖x‖
‖y‖ + 1

)2 − 2 cos∠x,y + 2
‖x‖
‖y‖ + 1

+ 1

=1.
(10)

The discrepancy using Normalized EuDist has the same
value when lim ‖x‖

‖y‖→0
and lim ‖x‖

‖y‖→∞
, which means no tol-

erance.
AGD and Proof of Corollary 1: According to Eq. (4), we
have

lim
‖x‖
‖y‖→0

D̂(x,y) = lim
‖x‖
‖y‖→0

1− 1

1 + ‖x−y‖‖y‖

=
1

2
, (11)

lim
‖x‖
‖y‖→∞

D̂(x,y) = lim
‖x‖
‖y‖→∞

1− 1

1 + ‖x−y‖‖y‖

= 1. (12)

The two equations denote that when ‖x‖‖y‖ → 0, AGD has
the tolerance value 1

2 < lim ‖x‖
‖y‖→∞

= 1, which means that

‖x‖ << ‖y‖ is acceptable as the half of perfect equal.

D. Contour of AGD
We show more function contour comparisons with exist-

ing measurement methods in Fig. 1, where the axes are the
angle ∠x,y, the ratio ‖x‖‖y‖ and the metric contour value z for
better visualization. As we can see, the CosDist (Fig. 1(a))
has no relation to the ratio. The tolerance for lim ‖x‖

‖y‖→0
of

EuDist depends on the norm of y (Fig. 1(b)). The proposed
AGD has fixed tolerance for lim ‖x‖

‖y‖→0
as shown in Fig. 1(c).

E. Introduction of MGDA
At any time, PCL training yields the following dynamic

multi-objective empirical risk minimization formulation:

min
θ,{θi|i∈T }

{`i (Di) | ∀i ∈ Tt} , (13)

where T is the task index set with activated data streams at
time t.

An elegant solution to the MOO for Pareto optimality [1]
is the Steepest Descent Method (SDM) [3], which aims to
obtain an optimal descent direction d∗ that satisfies

d∗, α∗ = argmin
d,α

α+
1

2
‖d‖2 ,

s.t. g>i d ≤ α, ∀i ∈ T ,
(14)
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(a) z = 1− x>y
‖x‖‖y‖
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(b) z = ‖x− y‖, ‖y‖ = 0.2
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(c) z = ‖x−y‖
‖y‖+‖x−y‖

Figure 1. Contours of different measures. Note that the x- and y-axes are the angle (i.e., ∠x,y) between x and y, and the magnitude ratio
‖x‖
‖y‖ , respectively. (a) Cosine distance; (b) Euclidean distance where ‖y‖ = 0.2; (c) Asymmetric gradient distance.

where the constraints let each task have non-conflict with
gradient d. Considering the Lagrange multipliers and
Karush–Kuhn–Tucker (KKT) condition, the dual prob-
lem solved by the Multi-Gradient Descent Algorithm

(MGDA) [2] is

w∗ =argmin
w

∥∥∥∑
i

wigi

∥∥∥2,
s.t.

∑
i

wi = 1 and wi ≥ 0,∀i.
(15)



The objective of MGDA is 0 and the resulting point satisfies
the KKT conditions, or the solution gives a Pareto descent
direction that improves all tasks.
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