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In this supplementary file, we provide the following materials:

• The role of edge features F(CH) in LF
EA (please refer to Section 4.2 in the manuscript).

• Ablation study on hyperparameter selection (please refer to Section 5 in the manuscript).
• Comparison on STISR models trained on synthetic LR-HR pairs and our Real-CE data (please refer to Section 5.1 in

the main paper).
• More visual comparisons among the STISR models trained on different text image datasets (please refer to Section 5.1

in the main paper).
• More visual comparisons among the STISR models trained with different loss combinations (please refer to Section

5.2 in the main paper).
• Experiments on images out of the Real-CE dataset.

A. The Role of Edge Features F(CH) in LF
EA

The feature level edge-aware loss LF
EA provides high-level supervision on the learning process so that the estimated HR

images can be perceptually closer to the ground truths in structural areas. Let V = F(ÎH) · F(ĈH)− F(IH) · F(CH). The
gradient back-propagated from LF

EA to the estimated HR text image ÎH can be calculated as:

∂LF
EA

∂ÎH
=


F(ĈH) · ∂F(ÎH)

∂ÎH
, if V > 0

−F(ĈH) · ∂F(ÎH)

∂ÎH
, else if V < 0

0, otherwise

 (1)

From Eq. (1), one can see that the edge information F(ĈH) is incorporated into the gradient to reconstruct the HR image. In
this way, we can enforce the model to be aware of the edge information in the text areas. Figure 1 shows an example. Though
supervision from the image feature F(ÎH) can improve much the text recovery over bicubic interpolation, as visualized in
Figure 1 (c), the text edges and strokes remain unclear, and some local structures of the characters are incorrectly recovered.
By incorporating the edge feature F(ĈH) in training, the STISR model can recover text characters with significantly better
edge boundaries and structures, as can be seen in Figure 1 (d).

Quantitative results can also be viewed in Table 1. One can see that, using image feature only in supervision leads to
limited enhancement on text recognition. Together with edge feature supervision, the SR recovery performance is largely
enhanced from 0.6492 to 0.6622 in NED, demonstrating the effectiveness of edge feature information in SR text recovery.

B. Ablation Study on Hyperparameter Selection
We perform ablation experiments to determine the balancing parameters α and β in our loss function (see Eq. (4) in the

main paper). We employ the RRDB [2] network as STISR model backbone. In the experiments, we first fix β to 0, and
search for the best α. By setting α to 0, 0.01, 0.1, 1 and 10, we obtain the results as in the upper panel of Table 2. One can
see that all the evaluation metrics increase when α increases from 0 to 1. However, when α is larger than 1, the LPIPS and
recognition performance decrease. To keep the best recognition performance, we set α = 1 in the experiments.
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Figure 1. (a) Bicubic LR image; (b) ground-truth HR; (c) and (d) show the STISR results of RRDB models trained on Real-CE without
and with edge features F(CH) in edge-aware loss LF

EA, respectively.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑
LR 19.65 0.6684 0.3987 0.2759 0.6173
Baseline 20.42 0.7303 0.2630 0.2914 0.6399
w/o F(CH) 20.09 0.7203 0.2108 0.3011 0.6492
w/ F(CH) 20.14 0.7210 0.2031 0.3093 0.6622
HR - - - 0.4807 0.8342

Table 1. STISR results of RRDB models trained on Real-CE with and without edge features F(CH) in edge-aware (EA) loss LF
EA. The

baseline model is trained with only L1 and pixel-level EA loss.

β = 0

α PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑
0 20.23 0.7231 0.2710 0.2865 0.6320
0.01 20.28 0.7247 0.2706 0.2908 0.6349
0.1 20.30 0.7278 0.2699 0.2887 0.6372
1 20.36 0.7299 0.2630 0.2914 0.6399
10 20.39 0.7310 0.2721 0.2902 0.6347

α = 1

β PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑
0.01 19.67 0.7156 0.1984 0.3152 0.6707
0.001 19.93 0.7199 0.2013 0.3127 0.6685
0.0005 20.14 0.7210 0.2031 0.3093 0.6622
0.0001 20.21 0.7227 0.2354 0.2982 0.6526
0 20.36 0.7299 0.2630 0.2914 0.6399

Table 2. Experimental results with different balancing parameters.

To determine the value of β, we first fix α to 1, and then conduct experiments on different values of β. In the lower panel
of Table 2, we show the experimental results by setting β to 0.01, 0.001, 0.0005, 0.0001 and 0, respectively. One can see
that the LPIPS and recognition performance of the STISR model show significant improvements as β increases; however,
the PSNR/SSIM indices drop abruptly when β is larger than 0.0005. To balance all indices, we choose β to 0.0005 in the
experiments.

C. STISR Models Trained on Synthetic Data vs. Real-CE Data
The image degradation modeling methods proposed in BSRGAN [3] and Real-ESRGAN [1] are widely used to synthesize

LR-HR image pairs, yet they are still limited in approximating the real-world degradations. In Table 3, we show the 4× STISR
results of the RRDB models trained on directly down-sampled LR-HR pairs, Real-ESRGAN degraded LR-HR pairs and our
Real-CE data. One can see that direct down-sampling and Real-ESRGAN degradation show marginal improvement over the



Train input PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑
Bicubic 19.65 0.6684 0.3987 0.2759 0.6173
LR w/ down-sampling 18.98 0.6711 0.2346 0.2756 0.6285
LR w/ Real-ESRGAN 18.17 0.6919 0.2285 0.2864 0.6399
Real-CE 20.14 0.7210 0.2031 0.3093 0.6622

Table 3. Experimental results of RRDB trained on synthetic data generated by Real-ESRGAN [1] and Real-CE real data.

Bicubic interpolation. While using Real-CE, the trained model shows significant improvement over Bicubic, verifying the
necessity and effectiveness of our Real-CE benchmark.

D. More Visual Comparisons among STISR Models Trained on Different Datasets
To better examine the effectiveness of our Real-CE dataset on recovering Chinese text, we present more visual comparisons

and text recognition results in Figure 2. One can see that the estimated HR text images by models trained on Real-CE exhibit
much better image quality and recognition accuracy than models trained on TextZoom and RealSR.

E. More Visual Comparisons among STISR Models Trained with Different Loss Combinations
To better illustrate the effectiveness of our proposed edge-aware losses LP

EA and LF
EA (refer to Section 4.2 in the main

paper), we present more visualization examples with more STISR models, including RRDB [2], RCAN [5] and ELAN [4].
The results are shown in Figures 3, 4 and 5, correspondingly. In each figure, different rows show the results generated in
4× (13mm to 52mm) and 2× (26mm to 52mm and 13mm to 26mm) zooming modes, and different columns show the results
generated by different loss combinations (L1, L1 + LP

EA and L1 + LP
EA + LF

EA).
From these figures, similar conclusions to Figure 8 in the main paper can be drawn, i.e., employing the EA losses into

model training can significantly enhance the text structure recovery. In addition, our loss works well with different backbone
networks and for different zooming modes.

F. Experiments on Images out of the Real-CE Dataset
We collect some test images using Redmi, OPPO, VIVO and Samsung smartphone sensors, which are out of the Real-CE

dataset, and perform STISR on them using RRDB [2] models trained on TextZoom, RealSR and our Real-CE. Visual results
can be found in Figure 6. One can see that the STISR model trained on our Real-CE dataset, which is built by iPhone device,
performs well, showing superior generalization capability to other sensors.



Figure 2. More visualizations and recognition results of RRDB models trained on different training datasets. The test images are from the
Real-CE test set. From top row to bottom row are visual and recognition results with zooming factors 4× (13mm to 52mm) and 2× (26mm
to 52mm and 13mm to 26mm). Wrong results are in red. Please zoom in for more details.



Figure 3. STISR results of RRDB models trained on Real-CE with different combination of losses. From top row to bottom row are results
with zooming factors 4× (13mm to 52mm) and 2× (26mm to 52mm and 13mm to 26mm). From left column to right column are the
results of bicubic interpolation, models trained with L1, L1 + LP

EA and L1 + LP
EA + LF

EA and HR. Please zoom in for more details.



Figure 4. STISR results of RCAN models trained on Real-CE with different combination of losses. From top row to bottom row are results
with zooming factors 4× (13mm to 52mm) and 2× (26mm to 52mm and 13mm to 26mm). From left column to right column are the
results of bicubic interpolation, models trained with L1, L1 + LP

EA and L1 + LP
EA + LF

EA and HR. Please zoom in for more details.



Figure 5. STISR results of ELAN models trained on Real-CE with different combination of losses. From top row to bottom row are results
with zooming factors 4× (13mm to 52mm) and 2× (26mm to 52mm and 13mm to 26mm). From left column to right column are the
results of bicubic interpolation, models trained with L1, L1 + LP

EA and L1 + LP
EA + LF

EA and HR. Please zoom in for more details.



Figure 6. Comparison of STISR models trained on different datasets on samples captured with different smartphones, which are out of our
Real-CE dataset. Please zoom in for more details.
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