
Supplementary Material for Borrowing Knowledge From Pre-trained Language
Model: A New Data-efficient Visual Learning Paradigm

Here we include the general algorithm of our method
(§ 1), dataset introduction and more implementation details
(§ 2), complete results of the experiments shown in the main
paper (§ 3), as well as using different language models (§ 4)
and visualizations (§ 5). In section § 6 we provide the de-
tailed derivation of Eq. (5) in the main paper. Finally, a
failure case is discussed in § 7.

1. General Algorithm

Our method is generally applicable to various data-
efficient training scenarios. Here we provide the general al-
gorithm in Alg. 1 using labeled image data (x, y). We note
that unlabeled data can also be utilized by assigning pseudo
labels via vanilla pseudo-labeling techniques or more ad-
vanced approaches.

2. Dataset And Implementation Details

2.1. Datasets

FGVC Aircraft is a benchmarking dataset for aircraft
visual categorization. The dataset contains 10,000 aircraft
images, with 100 images for each of 100 different aircraft
model variants. The data is split into 6,667 training images
and 3,333 testing images.

Stanford Cars is a fine-grained dataset contains 16,185
images of 196 classes of cars. The data is split into 8,144
training images and 8,041 testing images, where each class
has been split roughly in a 50-50 split. Classes are typically
at the level of Make, Model, Year, e.g. 2012 Tesla Model S
or 2012 BMW M3 coupe.

Caltech-UCSD Birds-200-2011 (CUB-200-2011) is the
most widely-used dataset for fine-grained classification. It
contains 11,788 images of 200 subcategories belonging to
birds, 5,994 for training and 5,794 for testing. We only use
the subcategory name for each bird to as concepts without
using the fine-grained natural language descriptions.

CIFAR-100 consists of 60,000 32x32 color images. The
100 classes in the CIFAR-100 are grouped into 20 super-
classes. There are 600 images per class, which is split into
500 training images and 100 testing images. Each image
comes with a“fine” label (the class to which it belongs) and

Algorithm 1: Language Guided Vision Training
Input: Labeled Data {(xi, yi)}ni=1; Concepts

{Wk}Kk=1; Vision Backbone F ; Pre-trained
Language Model T ; Prompt set {Pq}mq=1;
Hyper-parameters λ and τ ; Max training
iteration: I

Output: Language augmented Vision Model for
the Task: G ◦ F (G is the task-specific
classifier).

// Obtain text embedding
distributions before training.

1 Combine P withW to obtain input texts
{P1Wk,P2Wk, ...,PmWk}Kk=1;

2 Send input texts to T and obtain normalized text
embeddings {t(k)1 , t

(k)
2 , ..., t

(k)
m }Kk=1;

3 for k = 1, 2, · · · ,K do
4 Estimate text embedding distribution parameters

µk, Σk for conceptWk using Eq. (3);
5 end

// Train the vision model with
language semantic guidance

6 . Initialize classifier G and projector H;
7 for iter = 1, 2, · · · , I do
8 f i ← F (xi);
9 pi ← G(f i), hi ← normalize(H(f i));

10 Compute Lemp(pi, yi) by Eq. (1);
11 Compute Ltext(hi, yi) by Eq. (5);
12 L ← Lemp + λLtext;
13 Update model F,G,H by loss L;
14 end

a“coarse” label (the superclass to which it belongs). We
only use the “fine” label for classification.

Office-Home is a standard dataset for domain adaptation
and generalization which contains four different domains:
Artistic (Ar), Clip Art (Cl), Product (Pr) and Real-world
(Re). Each domain consists of roughly 4,000 images within
the same 65 object categories found typically in office and
home scenarios. We use each domain as the single source



Table 10: Complete table of accuracies (%) ↑ on DomainNet for unsupervised domain adaption. In each sub-table, the
column-wise domains are selected as the single source domain and the row-wise domains are target domains (testing domain).
In each super column, the methods use the same image model written on the top as backbone, where IN-1k/22k refers to
using ImageNet-1k/22k pre-trained model. The first super row shows ERM results which serves as baseline, and the two
rows below show our methods with CLIPtext and Bert-L as language model, respectively.

Image Model: ResNet-50 (IN-1k) Image Model: ConvNext-S (IN-1k) Image Model: Swin-B (IN-22k)

ERM clp inf pnt qdr rel skt Avg. ERM clp inf pnt qdr rel skt Avg. ERM clp inf pnt qdr rel skt Avg.

clp – 17.80 37.18 11.69 54.57 43.23 32.89 clp – 21.43 45.62 11.33 63.91 48.56 38.17 clp – 26.14 53.32 13.23 69.76 55.29 43.55
inf 36.37 – 32.27 3.47 49.88 28.21 30.04 inf 44.40 – 42.41 6.11 60.50 36.08 37.90 inf 55.66 – 51.29 8.00 68.68 45.90 45.91
pnt 44.03 18.24 – 6.41 58.56 37.83 33.01 pnt 48.80 20.70 – 5.78 66.00 42.05 36.67 pnt 58.04 25.73 – 6.42 69.47 46.59 41.25
qdr 11.33 1.18 1.89 – 5.64 8.94 5.80 qdr 27.29 4.24 11.27 – 20.56 17.94 16.26 qdr 35.74 6.00 21.80 – 33.13 23.53 24.24
rel 49.81 21.15 49.97 6.46 – 37.06 32.89 rel 51.50 22.10 52.50 7.22 – 40.70 34.80 rel 61.86 27.67 59.39 9.08 – 49.03 41.21
skt 52.88 15.56 39.51 14.05 51.23 – 34.65 skt 58.00 19.30 48.30 13.67 61.23 – 40.10 skt 64.91 22.54 53.65 15.69 67.37 – 43.83

Avg. 38.88 14.79 32.16 8.42 43.98 31.05 28.31 Avg. 46.00 17.55 40.02 8.82 54.44 37.07 33.98 Avg. 55.24 21.62 47.89 10.48 61.68 44.07 40.16

+CLIPtext clp inf pnt qdr rel skt Avg. +CLIPtext clp inf pnt qdr rel skt Avg. +CLIPtext clp inf pnt qdr rel skt Avg.

clp – 19.12 38.36 12.40 55.02 43.94 33.77 clp – 22.24 47.34 12.05 65.24 50.80 39.53 clp – 30.42 57.21 16.20 74.79 59.67 47.66
inf 37.65 – 34.78 5.12 50.83 30.86 31.85 inf 46.40 – 44.98 6.63 62.05 39.47 39.91 inf 60.61 – 55.32 10.38 73.32 50.69 50.06
pnt 44.56 18.59 – 6.09 58.12 37.98 33.07 pnt 49.80 22.04 – 6.36 65.52 44.20 37.58 pnt 61.80 29.41 – 10.30 74.00 52.10 45.52
qdr 13.47 1.38 1.94 – 6.06 9.61 6.49 qdr 29.89 5.10 14.82 – 24.97 20.08 18.97 qdr 40.50 10.26 28.51 – 44.97 28.93 30.63
rel 51.40 22.18 50.23 7.09 – 38.40 33.86 rel 52.38 22.96 53.22 7.45 – 42.97 35.80 rel 66.51 31.47 62.75 10.98 – 53.78 45.10
skt 54.64 16.01 40.44 14.43 51.18 – 35.34 skt 60.00 20.38 49.11 14.45 62.71 – 41.33 skt 69.43 26.27 57.54 18.90 72.27 – 48.88

Avg. 40.34 15.46 33.15 9.03 44.24 32.16 29.06 Avg. 47.69 18.54 41.89 9.39 56.10 39.50 35.52 Avg. 59.77 25.57 52.27 13.35 67.87 49.03 44.64

+Bert-L clp inf pnt qdr rel skt Avg. +Bert-L clp inf pnt qdr rel skt Avg. +Bert-L clp inf pnt qdr rel skt Avg.

clp – 18.93 38.33 12.76 55.00 43.91 33.79 clp – 22.53 47.30 12.18 65.26 50.82 39.62 clp – 30.48 57.27 16.21 74.82 59.66 47.69
inf 38.05 – 34.29 4.49 50.52 30.29 31.53 inf 46.75 – 44.97 6.84 61.90 39.22 39.94 inf 60.63 – 55.38 10.50 73.37 50.76 50.13
pnt 44.28 18.92 – 6.55 58.29 38.23 33.25 pnt 49.98 21.65 – 6.22 65.75 44.15 37.55 pnt 61.84 29.45 – 10.38 74.01 52.04 45.54
qdr 13.19 1.43 2.3 – 6.16 9.88 6.59 qdr 29.93 5.14 15.11 – 24.89 20.16 19.05 qdr 40.55 10.27 28.49 – 45.01 29.00 30.66
rel 51.28 22.19 50.34 7.57 – 38.54 33.98 rel 52.75 23.23 53.21 7.61 – 42.96 35.95 rel 66.57 31.50 62.80 11.08 – 53.76 45.14
skt 54.24 16.62 40.21 15.05 51.37 – 35.50 skt 59.99 20.50 49.42 14.65 32.58 – 41.43 skt 69.49 26.37 57.59 18.98 72.35 – 48.96

Avg. 40.21 15.62 33.09 9.28 44.27 32.17 29.11 Avg. 47.88 18.61 42.00 9.50 56.08 39.46 35.59 Avg. 59.82 25.61 52.31 13.43 67.91 49.04 44.69

and test model’s performance on other domains
DomainNet is a challenging cross-domain benchmark.

The whole dataset comprises ∼0.6 million images drawn
from 345 categories in six diverse domains: Infograph (inf),
Quickdraw (qdr), Real (rel), Sketch (skt), Clipart (clp),
Painting (pnt).

2.2. Additional Implementation Details.
Text embedding estimation. We adopt the modified

version of the 80 prompts provided in CLIP, which is adding
“This is” before the original prompt to make the sentences
more complete. For the text embeddings, we directly use
the output embedding corresponding to the concept instead
of the [cls] embedding or [eos] embedding. If the concept is
divided into several tokens by the tokenizer, we simply take
the average of the corresponding output. We find that using
the text embeddings obtained in this way generally yields
better results than using [cls] token embedding or [eos] to-
ken embedding. We think it is because special tokens in
pre-trained language models focus more on representing the
entire sentences rather than the specific object, making the
output embeddings more likely to from “prompt” cluster.
For the estimated covariance matrices, we use the diagonal
form to ease the computation in loss function.

Training Details. In SSL, the trade-off parameters λs,
λx and λu are set as 1.0 for all benchmarks. We adopt a
mini-batch size of 20 for EfficientNet-B2 on CIFAR-100

and a batch size of 48 for the rest vision backbones. We
assign new pseudo labels for all unlabeled training data at
the beginning of each epoch. In Single-DG, the parameter
λs and λx are set as 0.3 and 1.0 respectively, and the batch
size is set as 64 for all experiments.

3. Full Results of The Experiments
Due to space limitation, we only provide the average re-

sults of several tasks and analysis in the main paper. Here
we show the complete results of these experiments.

3.1. Complete Results on DomainNet.

Table 10 shows the full results of our methods using
CLIPtext (not reported in the main paper) and Bert-L as
language model, as well as the ERM baseline in our imple-
mentation. For CLIPtext, we refer to the text encoder that is
jointly pre-trained with ViT-H/14 image encoder. We find
it achieves slightly better results than the one jointly trained
with ResNet-50 in CLIP.

3.2. Complete Results of the Ablation Study.

Table 11 shows the complete results of our ablation study
on Office-Home. We can see that different language model
is favorable in different tasks (source domain), while gener-
ally GPT2-L and mT5-L yields better results.



Table 11: Complete results of the ablation study in table 7 in the main paper. Target domain accuracy (%) ↑ for single domain
generalization on Office-Home with different pre-trained language models. Backbone ResNet-50 and Swin-B are pre-trained
on ImageNet-1k and 22k. For each backbone, the best results are marked in bold and the second best are underlined.

Image Model Language Model
Source:Ar Source:Cl Source:Pr Source:Rw

Avg.
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-50 (IN-1k)

None (baseline) 43.71 67.60 73.78 51.03 60.90 63.32 52.73 38.81 72.21 64.80 44.17 76.89 59.16
CLIPtext 47.18 70.27 76.53 57.40 67.34 68.68 57.24 43.14 76.11 68.77 48.12 79.66 63.37
Bert-L 47.97 70.49 76.54 57.85 66.91 69.22 57.15 44.01 76.11 68.64 48.82 79.68 63.62
mT5-L 47.40 70.06 76.96 57.15 67.18 69.18 57.35 43.92 75.95 69.22 49.23 80.09 63.64
GPT2-L 47.58 70.69 76.98 58.01 66.86 69.13 57.35 43.69 75.90 70.17 49.19 79.68 63.77

Swin-B (IN-22k)

None (baseline) 70.32 84.97 88.99 82.52 85.91 87.68 80.21 67.59 88.56 83.80 68.05 90.15 81.56
CLIPtext 73.08 86.12 89.68 84.72 87.97 89.04 83.36 69.27 90.21 85.00 70.91 91.58 83.41
Bert-L 73.26 86.75 90.34 85.21 88.24 89.92 82.82 70.49 90.96 84.38 70.31 90.27 83.58
mT5-L 73.05 86.25 90.05 84.89 87.73 89.29 83.41 69.84 90.44 85.38 71.05 91.72 83.59
GPT2-L 73.22 86.73 90.20 85.13 88.17 89.74 83.35 70.06 90.73 85.54 71.27 91.78 83.83

Table 12: Complete results of the knowledge distillation comparison experiment in table 9 in the main paper. Vision models
ConvNext-S, ConvNext-B, Swin-B and language models Bert-S, Bert-L are selected as different teachers for comparison.
The best results are marked in bold and the second best are underlined.

Student Model Teacher Model
Source:Ar Source:Cl Source:Pr Source:Rw

Avg.
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-50

None (baseline) 43.71 67.60 73.78 51.03 60.90 63.32 52.73 38.81 72.21 64.80 44.17 76.89 59.16

ConvNext-S 45.38 68.01 75.83 53.70 63.84 65.89 54.51 41.46 73.90 66.00 46.32 78.55 61.12
ConvNext-B 46.06 69.04 75.14 53.98 64.59 66.72 53.23 41.42 74.38 65.72 46.64 78.42 61.28
Swin-B 45.99 68.94 75.71 53.74 64.46 66.11 53.82 41.48 74.37 65.66 46.84 78.59 61.31

Bert-S 48.11 70.67 76.70 57.64 66.70 68.63 56.24 43.83 75.67 69.84 48.55 80.20 63.57
Bert-L 47.97 70.49 76.54 57.85 66.91 69.22 57.15 44.01 76.11 68.64 48.82 79.68 63.62

3.3. Complete Results of The Knowledge Distilla-
tion Comparison Experiment.

Here we discuss the knowledge distillation experiment in
section 4.4 more thoroughly and report the complete experi-
ment results of table 9 in table 12. Classic knowledge distil-
lation involves a large vision model as teacher and an actual
deployed small model as student. In the comparison, we
adopt the standard response-based distillation method [1],
where teacher model is first fine-tuned on the interested task
and then use its logits as guidance to improve the student
model. Denote the teacher logit and student logit as pt and
ps, then the overall knowledge distillation objective for stu-
dent model has the following form:

Lkd = Lemp(ps, y) + λLR(pt,ps), (8)

whereLR usually is the KL-divergence loss and λ is a trade-
off hyperparameter.

It is well-believed that visual knowledge distillation im-
proves the student model via the transfer of “dark knowl-
edge”, which refers to the latent semantic relationship be-
tween categories that can be reflected through the teacher
model’s logits. Similarly, the text embedding space pro-
posed in our method is semantically rich and, through our
proposed feature alignment objective, is able to transfer the
semantic relationship to vision model. To compare their ef-
fectiveness, we train three large vision model of different ar-

chitecture and size and conduct standard visual knowledge
distillation on ResNet-50 using labeled data from a single
domain on Office-Home. For our method, we denote the
pre-trained language model as teacher and the interested vi-
sion model (ResNet-50 as well) as student. We include the
results of our method using a smaller-sized language model
Bert-S [2] to examine the influence of teacher model size.

As shown in table 12, when examine the cross-domain
generalization performance, we observe significant advan-
tage of using language model as teacher over vision model.
Specifically, three vision teacher model achieves similar and
limited improvements on ResNet-50, while the language
teacher model in our method doubles the accuracy improve-
ment. We attribute this improvement to the more direct se-
mantic transfer in our method.

4. Additional Results With Different Language
Models

Here we show more results of using different language
models to enhance vision model on FGVC Aircraft, Stan-
ford Cars, CUB-200 and Office-Home. The results are
shown in table 13. We can see that all the language mod-
els achieves comparable performances, which validate that
our method is able to borrow knowledge from a variety of
choices. It is also advised for practitioner to compare dif-
ferent pre-trained language models on the interested task to



Table 13: Accuracy (%) ↑ of our method on four benchmarks with different pre-trained language models. The best results
are marked in bold and the second best are underlined.

Vision Model Language Model
Aircraft Stanford Cars CUB-200

OH Avg.
15% 30% 50% 15% 30% 50% 15% 30% 50%

ResNet-50

None (baseline) 39.57 57.46 67.93 36.77 60.63 75.10 45.25 59.68 70.12 59.16 57.17
CLIPtext 71.08 83.05 87.34 79.49 88.07 91.28 65.00 74.78 80.31 63.37 78.38
Bert-L 71.05 83.41 87.22 79.34 88.78 91.46 65.96 75.70 80.91 63.62 78.75
Deberta-L 71.17 83.71 87.40 79.44 88.10 91.53 66.00 75.65 80.69 63.74 78.74
T5-L 70.51 83.29 86.98 79.79 88.88 91.75 66.14 75.25 80.07 63.62 78.63
mT5-L 70.39 83.02 87.37 79.93 88.91 91.77 65.98 75.68 81.08 63.64 78.78
GPT-2 70.18 82.96 86.71 79.23 88.61 91.77 66.02 75.53 80.88 63.77 78.57

CLIP Deberta-L mT5-L GPT2-L
Figure 5: T-SNE visualization of the text embedding space of different language models on Office-Home.

fully exploit the flexibility of our method.

5. Additional Visualizations

In this section, we show more visualizations of the gen-
erated text embedding space to deepen our understanding of
its property. We first show the t-SNE visualization results
of different language model. Then we provide heatmap of
concept similarities on two extra datasets.

5.1. T-SNE Visualization.

Besides the t-SNE figure of Bert-L text embedding
space, we illustrate here four other text embedding spaces
generated by CLIPtext, Deberta-L, mT5-L and GPT2-L re-
spectively. As shown in Fig. 5, it is interesting to dis-
cover that text embedding spaces generated by different
pre-trained language model varies significantly. CLIPtext

forms less compact “concept clusters” and thus results in
smaller separation between different concepts. Other lan-
guage models form more compact clusters for each concept,
yet they also form “prompt clusters”.

To explain why mT5-L has more prompt cluster than
Deberta-L while achieving better results in table 13, we
must consider the proposed distribution estimation process.
In fact, compared to most text embeddings that are clustered
based on the same category, those few outliers cannot have
notable effect on the estimated parameters.

5.2. Cosine Similarity Between Categories.

Similar to the text embedding similarity heatmap in Fig.
4 in the main paper, we plot the cosine similarity heatmap
on two additional datasets: a fine-grained dataset CUB-200-
2011 and a coarse-grained dataset CIFAR-100. The cosine
similarity is calculated between each two concepts using the
corresponding estimated mean embeddings. We normalize
the whole similarity matrix to range [0, 1] to better illustrate
the similarity relationship among concepts.
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Figure 6: Normalized cosine similarity map between mean
embeddings of different concepts on two datasets: fine-
grained CUB-200-2011 and coarse-grained CIFAR-100. All
embeddings are generated by pre-trained Bert-L.

As shown in Fig. 6, in each dataset, we manually select
12 categories that belongs to three different superclasses.
In CUB-200, we randomly choose four bird subcategories
under “Warbler”, “Sparrow” and “Vireo”. In CIFAR-100,
we select three superclass defined in the dataset: “Trees”,
“People” and “Insects”. We can observe that the text em-



beddings within the same group are more similar to each
other than to those outside the group.

6. Derivation of the Loss Upper Bound.

In this section, we provide the detailed derivation of the
upper bound of L∞

text (Eq. (5) in the main paper).

L∞
text =

1

n

n∑
i=1

E
t(yi)

− log
eτh⊤

i t(yi)

eτh⊤
i

t(yi) +
K∑

k ̸=yi

E
t(k)e

τh⊤
i

t(k)

 (9)

=
1

n

n∑
i=1

E

log(e
τh⊤

i t(yi)
+

K∑
k ̸=yi

E[eτh⊤
i t(k)

]) − log(e
τh⊤

i t(yi)
)


(10)

≤
1

n

n∑
i=1

log(E

e
τh⊤

i t(yi)
+

K∑
k ̸=yi

E[eτh⊤
i t(k)

]

) − E
[
τh

⊤
i t

(yi)
]
(11)

=
1

n

n∑
i=1

log(

K∑
k=1

E
t(k)

[
e
τh⊤

i t(k)
]
) − τh

⊤
i µ

(yi) (12)

=
1

n

n∑
i=1

log(

K∑
k=1

e
τh⊤

i µ(k)+τ2h⊤
i Σ(k)hi/2) − τh

⊤
i µ

(yi) (13)

=
1

n

n∑
i=1

− log
eF(hi,yi)

K∑
k=1

eF(hi,k)

+ F(hi, yi) − τh
⊤
i µ

(yi)

 (14)

=
1

n

n∑
i=1

− log
eF(hi,yi)

K∑
k=1

eF(hi,k)

+ τ
2
h

⊤
i Σ

(yi)hi/2

 . (15)

We denote F(h, y) ≜ τh⊤µ(y) + τ2h⊤Σ(y)h/2 for sim-
plicity. The inequality in Eq. (11) comes from the Jensen’s
inequality for convex function: E[log(X)] ≤ log(EX),
and the moment generation function for Gaussian variable
X ∼ N (µ,Σ): E[eh⊤X ] = eh

⊤µ+h⊤Σh/2 is applied to
obtain Eq. (13).

7. Failure Case.

Figure 7: T-SNE of
[eos] token embed-
dings of GPT2-L.

Here we show a failure case
of our method. It happens when
we use the output embedding of
the [eos] token (at the end of the
sencentense) in GPT2-L as the
text embedding. Note that unlike
Bert or Deberta that use bidirec-
tional encoding process which
allows any token in the middle
receives information from both
sides, GPT uses unidirectional
encoding where input texts are
processed in one direction. Therefore, it seems more rea-
sonable to use [eos] token embedding placed at the end of

the sentence for GPT. However, as shown in the t-SNE fig-
ure (Fig. 7), the resulting embedding space is highly non-
separable among different categories, and thus cannot pro-
vide useful information to help the vision model. How to
effectively use the [eos] embeddings in unidirectional lan-
guage models requires further exploration in the future.
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