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In this document, we provide additional details of our
method and implementations. We further provide more qual-
itative and some quantitative results. Please also refer to the
supplementary video for additional qualitative visualizations.

A. Video Interpolation using Events for NeRF
The usage of event cameras in computer vision has been

motivated by their unique advantages, namely, high dynamic
range, low latency, ultra-low power consumption, and the
absence of motion blur. [7] take advantage of synthesis-
based and flow-based approaches which are robust to motion
blur. [2] propose using the dynamic filtering layer to address
the spatially variant threshold and represent the residuals
between a blurry image and sharp frames as integrals of
events [4]. [9] introduces a unified framework for event-
based video deblurring and interpolation using a double inte-
gral (LDI) network and a fusion network. [3] propose a novel
three-phase CNN architecture that fuses intensity images and
event stream first at event camera resolution and then scales
up to RGB resolution, followed by colorization. [8] deploys
adversarial learning to reconstruct HR intensity images from
LR event streams. Unlike the mentioned works, we do not
interpolate the video frames and then train the deformation
neural radiance Field upon them. Instead, we process the
asynchronous events in their raw form which brings us com-
putational efficiency while exploiting the temporal precision
of events.

B. Details of Synthetic Data
In this section, we provide additional details of the camp-

fire and fluids dataset, created by us. The campfire and fluids
datasets are made from Blender models. To simulate realistic
fire and fluid in high framerate we set 960fps in Blender.
The resolution of fire is 1283 while for fluids is 3203. We de-
crease the reaction speed for the campfire to 0.8 and increase
the maximum temperature to 3.1 to control the flames rising
speed. Turbulence is also introduced to bring uncertainty
to the flaming process. For fluids, we increase the particle
sampling per cell to better simulate the motion of water.

More details such as customized shading can be found in the
Blender file of our dataset, which we will make available.

C. Details of PoseNet
Recall that in Section 3, we encode the pose residual term

through screw axis representation: S = (r(t); v(t)) ∈ R6.
We train 2 MLPs which output r(t) ∈ R3, v(t) ∈ R3 after
encoding time using sinusoidal positional encoding similar
to the input coordinate γ(t) : R1 → R1+θm. This allows the
network to learn high-frequency representation from time
input. We choose m = 1 for PoseNet and also for encoding
time in the deformation network. Next, we calculate the
translation and rotation using Rodrigues’ rotation formula
R = I + sin θK + (1 − cos θ)K2 where R is the rotation
matrix, θ is the rotation angle which can be calculated by
θ = ∥r(t)∥, and K is a skew-symmetric matrix also known
as the cross product matrix of the unit vector r̂(t) = r(t)

∥r(t)∥ .
We can also compute the translation vector as:

v =
(1− cos(θ))(r̂× v) + sin(θ)r̂× (r̂× v) + cos(θ)v

θ2
,

As mentioned in Section 3.1, the PoseNet learns the pose
residuals. Here, we compare the results for learning to pose
residual and absolute pose, which are presented in Table 1.
It is expected that learning residual yields better results as
the initialized pose will be closer to the ground truth pose.

Lego MSE PSNR SSIM LPIPS

Pose residual 0.32 35.04 0.99 0.03
Pose absolute 2.18 26.09 0.96 0.151

Table 1. Absolute pose vs. residual pose. In the upper row the
PoseNet is trained to learn the residual from the interpolated poses
using RGB frame poses, while the bottom row is trained to learn
the pose directly.

Recall that in Figure 5 of the main paper we provide the
position error obtained by initial pose interpolation. Here
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Figure 1. PoseNet robustness against injected rotation noise.

in Figure 1 we report the rotation error of our method after
injecting different magnitudes of rotation noise. We found
that our method is robust to small rotation noise and can
effectively reduce large rotation noise.

Number of Views 10 25 50

Metinaccurately LPIPS PSNR LPIPS PSNR LPIPS

Train from scratch 30.06 0.0623 33.95 0.045 35.45 0.036
Finetune 32.13 0.046 32.55 0.037 35.04 0.034

Table 2. Training Protocol. Training from scratch provide better
results with more accurate pose initialization but for inaccurate
pose initialization training PoseNet as finetuning after a first round
of training performs better.

D. More Details on Implementation & Training
We first dive into more details about the implementation

of our DE-NeRF and then provide the training protocols and
hyperparameters.We initialize the radiance field MLP with
Xavier-initialization and similar to [5] for both deformation
and PoseNet we initialize the output layer with uniform dis-
tribution from U(−10−4, 10−4) so that the transformation
will initially remain close to identity. The optimizer for train-
ing both the deformation radiance Field and the PoseNet
are Adam [1]: β1 = 0.9 and β2 = 0.999. The learning rate
follows an exponentially decayed schedule from 2e-3 to 1e-4.
For PoseNet the learning rate decayed from 1e-3 to 5e-5 for
stable training.

Here we compare two different training protocols in Non-
rigid Lego with a different number of frames used as shown
in Table 2. Train from scratch implies that DE-NeRF learns
the radiance field as well as the trajectory residual at the
same time from the beginning. In contrast, the Finetune
approach learns the deformation radiance field only based
on the interpolated trajectory and then enables the PoseNet
later for joint training. We found that when the pose is well-
initialized, using 25 and 50 frames, better results are obtained
when enabling PoseNet in the beginning. Conversely, when
the initialized pose inaccurately for 10 frames cases, we
found enabling the PoseNet after a pre-training improves the
results. It can be attributed to the benefits of solving tasks
one by one and the learned radiance field provides additional

constraints for PoseNet training.

λ MSE PSNR SSIM LPIPS

100 0.54 33.59 0.993 0.0429
10 0.30 35.44 0.997 0.0363
1 0.32 35.02 0.995 0.0533
0.1 1.02 30.24 0.981 0.0929
0.01 6.13 22.20 0.873 0.3124

Table 3. Influence of λ. PSNR values for different hyperparameter
λ of the RGB photometric loss on Lego dataset.

Lego MSE PSNR SSIM LPIPS

Translation 0.32 35.04 0.99 0.03
SE(3) 0.33 34.57 0.99 0.052

Umbrella MSE PSNR SSIM LPIPS

Translation 0.45 33.44 0.95 0.341
SE(3) 0.37 33.99 0.95 0.342

Table 4. Different warps. Two cases highlighting the pros and cons
of SE(3) deformation field compared to translation only.

D.1. Sensitivity to Hyperparameter λ

In Table 3 we analyze how the hyperparameters λrgb
impact the performance. It can be noticed that with small
λrgb the method may suffer due to color confusion caused
by noisy brightness estimation. Similarly, the PSNR drops
when λrgb is too large as the event information cannot be
fully exploited. Nevertheless, our experiments show that the
proposed method is not too sensitive to the choice of the
hyperparameter λ.

E. Translation vs. SE(3) Deformation Field

As suggested in [5], we also experimented with SE(3)
deformation field, separately from the translation-only de-
formation field reported in the paper. We found that SE(3)
field occasionally performs better than that of translation
only. These examples are Fluid and Umbrella. Therefore, the
qualitative results in the supplementary material for the latter
example are shown with SE(3) deformation field. These two
cases can be directly compared in Table 4 (in the paper)
and Table 5 (here) for the mentioned examples. Some quan-
titative results for translation only and SE(3) deformation
field are reported in Table 4. It can be seen that the SE(3)
deformation is not always better. Therefore, we reported
translation-only deformation field results in the main paper,
for simplicity.
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Table 5. Qualitative depth comparisons of our method against other methods on synthetic and real-world datasets.
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F. More Qualitative Results
We present more qualitative results for our method and

comparison with other methods Figure 5. Please, also refer
to our supplementary video.
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