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Appendix

A. Overview
This document is the supplementary material of submis-

sion 4378. We provide more details of models, experiments
and analysis results in this document. Sec. B introduces
more details about our multi-frame 3D object detectors.
Sec. C describes the implementation details of our offline
tracking. In Sec. D, the network structures and the model
training details are described together with figures and ta-
bles. Sec. F provides more experiment results and analyses.
We also visualize the results after our DetZero in Sec. G.

In addition, we attach several videos to better show
the effect of our DetZero. “DetZero scene1 fv.mp4”
is to display the final stable detection and track-
ing performance. “DetZero scene2 bev.mp4” is to dis-
play the comprehensive detection results by show-
ing true positive, false positive and missing boxes
with different colors. “GRM+PRM Vehicle.mp4” and
“GRM+PRM Pedestrian.mp4” are two examples to show
how our refining models work. Please refer to them for bet-
ter visualization.

B. Multi-frame 3D Object Detection
In this section, we provide more detailed explanations

of the multi-frame 3D object detector. Please refer to Ta-
ble 9 for the detailed ablation study of multi-frame detec-
tors. Firstly, we take CenterPoint [56] as our base detector
owing to producing dense detection results, which is bene-
ficial for the downstream refine module.
Multi-frame Input. We accumulate LiDAR sweeps to uti-
lize temporal information and to densify the LiDAR point
cloud. The past 4 frames combined with the current frame
serve as our input point cloud. To distinguish points from
different sweeps, we also follow [9] to add a time offset
as an additional attribute to the point cloud. Moreover, 3-
frame input (past 2 + current 1) is also used to make up
more detection models for boosting the performance in the
subsequent model ensembling.
Two-stage Module. To obtain more accurate bounding
boxes, we introduce the Point Density-Aware Voxel net-
work (PDV) [13] as the two-stage module to refine the
coarse proposals coming from the multi-frame base detec-
tor. This model can leverage the voxel point centroid local-
ization and account for point density variations to enhance
refining features.
Model Ensembling. Following [19, 14], we use dif-
ferent TTA settings to boost the inference performance:
[0�,±22.5�,±45�,±135�,±157.5�, 180�] for global rota-
tion along z-axis, [0.95, 1.05] for global scaling. Be-
sides, different grid sizes of [0.075, 0.075, 0.15]m and
[0.1, 0.1, 0.15]m are used to train both 5-frame and 3-frame

input models. Finally, we adopt 3D version WBF [36] to
fuse different model results combined with the above TTAs.
Training Details. We use Adam optimizer with one-cycle
learning rate policy, with max learning rate 3⇥10�3, weight
decay 0.01 and momentum 0.85 to 0.95. We also adopt
the common data augmentations including global rotation,
global scaling, translation along z-axis and gt-sampling to
train the base detector for 20 epochs. The total batch size is
set as 64. The gt-sampling is removed for last 5 epochs
training [40]. We train another 6 epochs for two-stage
refinement without gt-sampling, while keeping the same
batch size and learning rate as the first stage. Besides the
general classification and regression loss functions, we also
add the IoU loss function [57] to better account for the
center-based object detection.

IoU overlap ratio

(a)

(b)

Figure 5. The comparison between traditional IoU based and over-
lap ratio based calculation. We show two examples here, and the
blue box, red box, orange box represent vehicle, pedestrian and
cyclist from BEV respectively. And the gray region represents the
union of two boxes while the pink region represent the intersection
for best view. For (a), the pedestrian FP is totally inside the vehi-
cle, the IoU value between these two boxes is still small, while the
overlap ratio equals 1 (the denominator is the same as the numer-
ator). For (b), the gray regions are quite different for these two
methods, so the overlap ratio metric could lead to small FPs filter-
ing.

C. Implementation Details of Offline Tracking
Our multi-frame 3D detector is encouraged to generate

sufficient bounding boxes. Hence, we utilize pre-processing
operations to stable the association of our offline tracker.
To be specific, we found that there are many boxes over-
lapped with each other. And some small boxes are even
completely wrapped by other boxes, for example, the ve-
hicle boxes contain pedestrian boxes. In this situation, the
traditional IoU based calculation will be invalid, as shown
in Fig. 5. Therefore, we adopt a new metric to determine
whether a box should be kept or filtered out, which is called
overlap ratio. For each box (subject), we first calculate pair-
wise itersection area with other boxes (object), which serve
as the numerator. Then, we use the original area of object
box as denominator to get the result, and the value range is
[0, 1]. This overlap ratio can filter out the overlapped boxes
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Base detector Multi-frame 0.075 Voxel Two-stage TTA Vehicle (L1 / L2) Pedestrian (L1 / L2)
X 74.51 / 66.44 70.56 / 63.57
X X 78.61 / 71.07 78.78 / 71.46
X X X 79.57 / 72.04 81.09 / 73.16
X X X 81.02 / 73.15 80.32 / 72.39
X X X X 81.17 / 73.29 81.14 / 74.00
X X X X X 82.57 / 75.09 83.23 / 76.47

Table 9. Effect of each component in our multi-frame Detection module on WOD val set. Metrics are 3D APH of both L1 and L2 difficulties
for Vehicle and Pedestrian.

of small objects as shown in Fig. 5. We also report the quan-
titative performance in Table 16. In our implementation, we
use BEV overlap ratio and set the thresholds as 0.3 for Ve-
hicle, 0.2 for Pedestrian and Cyclist.

In our two-stage data association, the high-score group
contains boxes satisfying two options: (1) the confidence
score is larger than 0.1, and (2) there are more than 3 (3
for Vehicle, 1 for Pedestrian and Cyclist) points inside the
box. Otherwise, the boxes are assigned to low-score group.
The threshold used for association is different for the two
groups. In high-score group, the new detected boxes are
first associated with pre-existing object tracks by BEV IoU
(0.3 for Vehicle, 0.15 for Pedestrian and Cyclist). The un-
matched boxes are used to generate new object tracks and
fed into low-score group for next stage association (0.2 for
Vehicle, 0.1 for Pedestrian and Cyclist). After successful
association, we would replace the trajectories with matched
detected boxes, rather than updating them through Kalman
filtering.

In the life cycle management, the birth rate and death
rate of an object track are set to 1 and infinite. When any
two object tracks overlap with each other and the ratio is
larger than the threshold (0.5 for Vehicle, 0.4 for Pedestrian
and Cyclist), we will merge them together by keeping the
earlier birth object ID. Afterward, any redundant boxes that
have not been updated are removed.

D. Implentation Details of Attribute-based Re-
fining

In this section, we provide the details of the network
structure, training strategies and loss functions of each re-
fining model.

(a) (b)
Figure 6. The point-to-surface encoding in GRM (a) and point-to-
corner encoding in PRM (b). All the distances are three dimen-
sional (x, y, z). Note that there are a few points outside the corre-
sponding proposal box.

D.1. Geometry Refining Model

Encoder Network Structures. In our GRM, the query en-
coder and value encoder are both PointNet [27] structured.
Each layer is built as a multi-layer perceptron (MLP) fol-
lowed by batch normalization and ReLU activation layer.
The query encoder ENC1 takes as input t randomly se-
lected samples to generate corresponding geometry queries
Qgeo 2 Rt⇥D. Meanwhile, the selected n geometry-aware
points (after proposal-to-surface encoding shown in Fig. 6)
are fed into the value encoder ENC2 to generate the global
point feature, serving as Vgeo 2 Rn⇥D. The details of point
cloud processing are shown in Table 10 and Table 11 respec-
tively.

Index Input Operation Output Shape
(1) - geometry points f geo t⇥ 256⇥ 11
(2) (1) Linear(11 ! 128) t⇥ 256⇥ 128
(3) (2) ReLU, BN t⇥ 256⇥ 128
(4) (3) Linear(128 ! 128) t⇥ 256⇥ 128
(5) (4) ReLU, BN t⇥ 256⇥ 128
(6) (5) Linear(128 ! 256) t⇥ 256⇥ 256
(7) (5) Max pooling t⇥ 256
(8) (7) Linear(256 ! 256) t⇥ 256
(9) (8) ReLU, BN t⇥ 256

Table 10. The architecture of query encoder in GRM. t is the num-
ber of randomly selected proposals for each object track. For each
proposal, we randomly sample 256 points.

Attention-based Decoder. Our decoder layer follows
the classical design, which consists of a multi-head self-
attention layer, a multi-head cross-attention layer and an
FFN with residual structure. We adopt 1-layer structure in
our implementation and the network structure is shown in
Fig. 7.

For the multi-head self-attention layer (SA), we enrich
contextual relationships and feature differences among se-
lected samples. Specifically, we map the object queries
Qgeo by linear projections W1,W2,W3 to form the so-
called query, key, and value. For simplicity, we omit the
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superscript “geo”. Then, the output after SA is given by

SA
�
Qgeo� =

2

4
tX

m=0

exp
⇣
W1qi (W2qm)T

⌘

Pt
j=0 exp

⇣
W1qj (W2qj)

T
⌘W3qm

3

5

(1)
where [·] is a concatenation operation and Qgeo can be di-
vided into [q1, · · · ,qi, · · · ,qt] , i = 1, ..., t.

For the multi-head cross-attention layer (CA), the re-
fined object queries can aggregate relevant context from
global point features for compensating supplementary
views. And the calculation is expressed by

CA (Qgeo,Kgeo,Vgeo) =

2

4
tX

m=0

exp
⇣
W4qi (W5km)T

⌘

Pt
j=0 exp

⇣
W4qj (W5kj)

T
⌘W6vm

3

5

(2)

where W4,W5,W6 are linear projections, Kgeo can be
divided into [k1, · · · ,kt], and Vgeo can be divided into
[v1, · · · ,vt].
Training Details. During training, we randomly selected
t = 3 object proposals as geometry queries. While in infer-
ence, the 3 samples are selected with the highest scores. For
each query, we predict its size classes (among pre-defined
template size classes) and residual sizes for each size class.
We use 3 size anchors (length, width, height) for all three
classes: (4.8, 1.8, 1.5), (10.0, 2.6, 3.2), (2.0, 1.0, 1.6). The
size classes are supervised with a cross-entropy loss Lgeo

cls
while the residual sizes are supervised with a L1 loss Lgeo

reg .
The total geometry refining loss is Lgeo = 0.1Lgeo

cls + 2Lgeo
reg .

The final geometry size is the average of these 3 predictions,
which is then assigned to all the frame of the object track.

The randomly selected n = 4096 geometry-aware points
are augmented through randomly flipping along X, Y axes
with 50% chance, and randomly rotating around the Z-
axis by Uniform

⇥
�⇡

2 ,
⇡
2

⇤
degrees, and randomly scaling by

Uniform[0.9, 1.1]. During inference, we also adopt TTA

Index Input Operation Output Shape
(1) - geometry points f geo n⇥ 10
(2) (1) Linear(10 ! 128) n⇥ 128
(3) (2) ReLU, BN n⇥ 128
(4) (3) Linear(128 ! 128) n⇥ 128
(5) (4) ReLU, BN n⇥ 128
(6) (5) Linear(128 ! 512) n⇥ 512
(7) (5) Max pooling 128
(8) (7) Repeat n⇥ 128
(9) (5)(8) Concatenate n⇥ 640

(10) (9) Linear(640 ! 256) n⇥ 256
(11) (10) ReLU, BN n⇥ 256

Table 11. The architecture of value encoder in our GRM.
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Figure 7. The network structure of decoder in GRM.

settings, in which the scaling operation can boost the perfor-
mance at most while the flipping and rotation along z-axis
operations lead to slight improvements.

We use Adam optimizer with a one-cycle decay policy to
separately train the model for each class. The initial learn-
ing rate is 0.001 and the batch size is set to 128. The to-
tal epochs are 30 for Vehicle, 100 for Pedestrian and 500
for Cyclist. In total, we have extracted around 44K vehi-
cle tracks, 18K pedestrian tracks and 0.5K cyclist tracks for
training. Ground-truth boxes are assigned to every frame of
the object track (frames with no matched ground-truth are
skipped, such as the non-point objects).

D.2. Position Refining Model
Encoder Network Structures. The encoders in PRM are
similar to those in GRM. Each object track is padded with
zeros to the length of the whole sequence, such as 200
for WOD. The full processing procedures are shown in
Tabel 12.
Attention-based Decoder. The full attention-based process
is the same as mentioned by Eq. 1 and Eq. 2. And the net-
work structure is shown in Fig. 8.
Training Details. The object tracks short than 7 are dep-
recated during training, and we also adopt a random frame
deprecation as the additional data augmentation. Random
flipping operation could boost the performance at most by
stabilizing the trajectories during inference. The resid-
ual distances between each tracked box to the randomly-
selected proposal’s center are supervised with an L1 loss
Lce

reg. For heading prediction, we also utilize a bin-based
classification and residual degrees. We use 12 heading an-
chors, each bin accounts for 30 degrees from 0 to 360 de-
grees. The total loss is Lpos = Lce

reg + 0.1Lyaw
cls + 2Lyaw

reg .
We train total 50 epochs for Vehicle with a batch size of 96,
100 epochs for Pedestrian with a batch size of 128, and 200
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Index Input Operation Output Shape
(1) - position points f geo 200⇥ 256⇥ 32
(2) (1) Linear(32 ! 128) 200⇥ 256⇥ 128
(3) (2) ReLU, BN 200⇥ 256⇥ 128
(4) (3) Linear(128 ! 128) 200⇥ 256⇥ 128
(5) (4) ReLU, BN 200⇥ 256⇥ 128
(6) (5) Linear(128 ! 256) 200⇥ 256⇥ 256
(7) (6) Max pooling 200⇥ 256
(8) (7) Linear(256 ! 256) 200⇥ 256
(9) (8) ReLU, BN 200⇥ 256

Table 12. The architecture of query encoder in PRM. The object
track is padded to the length of 200. For each proposal of the
object track, we randomly sample 256 points.

epochs for Cyclist with a batch size of 64. The optimizer
setting is the same as our GRM.
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Figure 8. The network structure of decoder in PRM.

D.3. Confidence Refining Model

For the first classification branch of our CRM, we use
different IoU thresholds to determine the positive and neg-
ative samples. Specifically, ⌧h is set to 0.7 for Vehicle, 0.5
for Pedestrian and Cyclist, ⌧l is set to 0.35, 0.25 and 0.25
respectively. We use binary labels 0 and 1 for supervision.
For both two branches, we use BCE loss to supervise the
predictions. And the total loss Lconf = Lconf

cls + Lconf
iou . We

train total 30 epochs for Vehicle with a batch size of 256,
50 epochs for Pedestrian with a batch size of 256, and 100
epochs for Cyclist with a batch size of 64. The optimizer
setting is the same as our GRM.

E. Details of the Human Label Study
We keep the same setting as 3DAL [29], and the ran-

domly selected 5 sequences from the WOD val set are listed
in Table 13. We directly utilize their human labeling re-
sults rather than repeat the whole labeling task. In summary,
there are 12 experienced labels to annotate the 15 labeling
tasks (3 sets of re-labels for each sequence) and obtain 2.3k
labels. Then, the human APs are computed by comparing
them with the WOD’s released ground-truth labels and us-
ing the number of points in boxes as human label scores.

Sequence
segment-17703234244970638241 220 000 240 000

segment-15611747084548773814 3740 000 3760 000
segment-11660186733224028707 420 000 440 000
segment-1024360143612057520 3580 000 3600 000
segment-6491418762940479413 6520 000 6540 000

Table 13. The list of selected sequences from WOD val set for
human label study.

Besides, we also report the statistical results of auto la-
bels (on 90% train set) in Table 14 to better show that the
auto labels contain fewer boxes than ground-truth, espe-
cially for the hard cases (object points are smaller than 5).
Therefore, as shown in Fig. 9, the student model trained
with auto labels would generate fewer false positives than
training with ground-truth especially when the score is
larger than 0.2. Besides, when we remove the boxes by
cutting different scores, the student model trained with auto
labels can preserve more true positive boxes, which proves
that the model is more confident in the easy samples. We in-
fer that the model can focus more on the easy samples with
better convergence.

F. More Experiments
Comparison on different distances. To better evaluate the
effect of our DetZero, we report the performance on dif-
ferent distances. As shown in Tabel 15, for both Vehicle
and Pedestrian, the improvements are increasing while the
distances are from near to far. It proves that the current per-
formance bottleneck of object detection exists at the farther

Vehicle Pedestrian
� 5 pts < 5 pts � 5 pts < 5 pts

Ground-truth 3, 435, 724 495, 419 1, 535, 584 303, 308
Auto labels 2, 867, 096 165, 924 1, 290, 236 158, 074

Table 14. The comparison between ground-truth and auto labels.
Boxes in auto labels have an IoU larger than thresholds (0.7 for
Vehicle and 0.5 for Pedestrian) would be kept for statistics.
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Figure 9. The number of false positive boxes curve and the recall
curve on WOD val set. The curves decrease by cutting scores from
0 to 1.0.

Total 0-30m 30-50m 50+m
L1 L2 L1 L2 L1 L2 L1 L2

Upstream 82.57 75.24 94.25 93.35 81.54 75.25 63.28 51.32
Full 89.06 82.92 96.27 95.52 88.41 83.97 77.80 65.70

improve +6.49 +7.68 +2.02 +2.17 +6.87 +8.72 +14.52 +14.38
Upstream 83.07 76.34 86.09 82.26 82.09 75.39 77.35 65.22

Full 87.06 81.01 89.25 85.71 86.14 80.84 83.08 71.94
improve +3.99 +4.67 +3.16 +3.45 +4.05 +5.47 +5.73 +6.72

Table 15. Performance evaluation of different distances on WOD
val set. Metrics are standard 3D APH of both L1 and L2 difficul-
ties for Vehicle (first group) and Pedestrian (second group).

range. And our DetZero could utilize the long-term tempo-
ral context to optimize these boxes located at the beginning
and the end of an object track. In addition, the improve-
ments of objects with L2 difficulty are larger than those of
L1 difficulty, which draws the same conclusion as Table 8.
Offline tracking generates complete tracks. We list the
top SOTA tracking methods on Waymo 3D tracking leader-
board 2 in Table 20. Our DetZero ranks 1st place by out-
performing previous SOTA performance with 9.97-point

2We report the performance of 3D detection and tracking till 2023-03-
08 23:59 GMT.

Vehicle (0.7 / 0.5) Pedestrian (0.5 / 0.3)
Recall Precision Recall Precision

Detection 83.6 / 95.6 13.4 / 15.3 88.9 / 97.1 6.7 / 7.3
IoU filer 75.3 / 92.7 52.6 / 65.1 83.8 / 95.0 17.8 / 20.2
OR filer 75.2 / 92.4 55.8 / 69.0 82.7 / 93.5 20.7 / 23.4

Offline Trk. 75.4 / 91.8 66.2 / 81.9 81.2 / 91.3 35.7 / 40.3

Table 16. Performance comparison of our offline tracking. Metrics
are 3D Recall and Precision under different IoU thresholds for Ve-
hicle (0.7 / 0.5) and Pedestrian (0.5 / 0.3). OR filter is the filtering
operation based on the overlap ratio.

MOTA (L2) for all classes. Compared to our own upstream
results, we still keep a huge performance improvement with
5.84-point MOTA (L2) for all classes.

We also show the effect of generating sufficient complete
object tracks in Table 16. The first row shows that the de-
tection results contain huge false-positive boxes, resulting
in very low precision performance. Traditional IoU-based
filtering operations will loose the effect when facing over-
lapped boxes. As a comparison, our overlap ratio based fil-
tering would further remove these boxes, especially under
a loose threshold. Finally, the whole offline tracking proce-
dure would further remove FPs while keeping a slightly-low
Recalls.
Effect of point cloud information encoding. We show
the ablation of point cloud information encoding methods
used in GRM and PRM. For every experiment, we ran-
domly selected 20% sequences (160) of the original train
set for training, and evaluate the performance on whole val
set (202 sequences). We also report the Accuracy perfor-
mance by object’s motion state, which is calculated by its
ground-truth trajectory. In Table 17, our point-to-surface
encoding method yields the largest gains. In Table 18, the
point-to-corner encoding method yields the largest gains
compared to point-to-center encoding. Because the tracked
boxes have already provided efficient geometry informa-
tion, which could be efficiently utilized by our encoding
method. We also find that the improvements after position
refining are much higher than those after geometry refining,
which further demonstrates the effect of our PRM on re-
moving jitters and smoothing trajectories through attending
global motion information.

xyzi p2s score ALL Static Dynamic
box track box box

X 78.08 66.87 76.18 84.12
X X 78.50 67.36 76.60 84.43
X X X 78.56 67.42 76.66 84.51

Table 17. Effect of the different point encoding method for GRM.
Metrics are Accuracy under standard IoU (0.7 for Vehicle) for both
box-level and track-level statistics. We split the objects based on
its ground-truth motion state for better comparison.
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xyzi p2ce p2co score ALL Static Dynamic
box track box box

X 78.95 68.78 78.36 80.81
X X X 80.98 71.95 80.71 81.84
X X X 81.84 72.83 81.30 83.55
X X X X 81.99 73.22 81.47 83.60

Table 18. Effect of the different point encoding method for PRM.
Metrics are Accuracy under standard IoU (0.7 for Vehicle) for both
box-level and track-level statistics. We split the objects based on
its ground-truth motion state for better comparison.

# of query ALL Static Dynamic
box track box box

1 78.29 66.81 76.38 84.27
2 78.48 67.23 76.46 84.34
3 78.56 67.42 76.66 84.51
5 78.57 67.32 76.66 84.50

Table 19. Effect of the different number of geometry queries used
in GRM. Metrics are Accuracy under standard IoU (0.7 for Ve-
hicle) for both box-level and track-level statistics. We split the
objects based on its ground-truth motion state for better compari-
son.

Effect of the number of geometry queries. We show the
empirical performance by selecting different object sam-
ples as geometry queries. As shown in Table 19, the
performance increases while the number of queries in-
creases, which could be viewed as another data augmen-
tation method. Note that the performance gaps among them
may not be very stable and we finally select 3 queries in our
whole processing.

G. Qualitative Results
In this section, we show the qualitative comparisons after

our attribute-refining module in Fig. 10 and Fig. 11.
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Method Rank Frames MOTA Vehicle (MOTA " /MOTP#) Pedestrian (MOTA " /MOTP#) Cyclist (MOTA " /MOTP#)
L2 L1 L2 L1 L2 L1 L2

DetZero (Full) 1 200 75.05 79.04 / 14.09 75.97 / 14.18 77.60 / 28.76 76.03 / 28.76 73.24 / 23.77 73.16 / 23.77
DetZero (Upstream) � 200 69.21 71.02 / 15.47 67.96 / 15.47 71.56 / 29.90 70.00 / 29.90 69.75 / 24.24 69.67 / 24.24
InceptioLidar⇤ 2 10 65.08 68.78 / 15.68 65.58 / 15.70 66.38 / 29.54 64.52 / 29.54 65.19 / 25.42 65.12 / 25.42
HorizonMOT3D [42] 3 5 63.45 67.30 / 15.75 64.07 / 15.77 65.88 / 30.67 64.15 / 30.67 62.20 / 25.45 62.13 / 25.45
MFMS Track⇤ 4 4 63.27 66.45 / 15.65 63.14 / 15.65 65.47 / 30.19 63.85 / 30.19 62.90 / 25.44 62.83 / 25.44
CasTrack⇤ 5 5 62.60 66.95 / 15.79 63.66 / 15.79 66.39 / 30.22 64.79 / 30.24 59.41 / 25.30 59.34 / 25.30
ImmortalTracker [41] 6 2 60.92 63.77 / 16.22 60.55 / 16.22 62.20 / 31.17 60.60 / 31.20 61.68 / 27.41 61.61 / 27.41
OptMOT⇤ 7 2 60.85 65.47 / 16.16 62.18 / 16.16 60.02 / 30.58 58.31 / 30.58 62.14 / 26.97 62.06 / 26.97
SimpleTrack [24] 8 2 60.18 63.53 / 16.19 60.30 / 16.23 61.75 / 31.09 60.13 / 31.14 60.18 / 27.35 60.12 / 27.35
CenterPoint [56] 11 2 58.67 62.58 / 16.30 59.38 / 16.37 58.28 / 31.13 56.64 / 31.16 60.06 / 27.62 60.00 / 27.62

Table 20. Performance comparison on the Waymo 3D tracking leaderboard. Metrics are standard 3D MOTA and MOTP by both L1 and
L2 difficulties. Anonymous submissions are marked with ⇤.

Figure 10. The visualization of GRM results on WOD val set. The red boxes are selected from one frame of the object track, and
corresponding points are also colored with red. The refining boxes with precise sizes are colored with blue.
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Figure 11. The visualization of PRM results on WOD val set. The first row is the input object tracks, and the second row is the corresponding
results after PRM. We use red dotted circles to mark the important cases.
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