
Appendix
This appendix is organized as follows:

• Section A.1 provides the method implementation de-
tails for partition learning with continuous partition
matrix (Section 4.1) and different forms of classifica-
tion loss Lcls (Section 4.2).

• Section A.2 presents the experiment details of training
settings and the estimation of demographic attribute la-
bels with pretrained models (Section 5.1).

• Section A.3 shows additional analysis and results.
Specifically, Section A.3.1 presents experiments with
different Lcls and demographic attributes. Sec-
tion A.3.2 discusses ablation study on the choice of
Linv and settings of partition set P during feature
learning, as well as the effect of loss weight λ during
partition learning (Section 5.4). Section A.3.3 conveys
analysis of causal effect learning and provides addi-
tional visualization results (Section 5.5).

A.1. Method Implementation in Section 4
This section begins by presenting the implementation de-

tails of continuous partition matrix optimization in parti-
tion learning (Section 4.1), followed by the discussion on
various forms of classification loss Lcls in feature learning
(Section 4.2).

A.1.1. Partition Learning in Section 4.1

During partition learning, we maximize the objective
Linv to obtain the partition matrix P and the confound-
ing demographic attribute. In practice, to enable back-
propagation in optimization, we adopt a continuous par-
tition matrix, i.e., soft partition denoted as P̃ ∈ RC×K .
Specifically, P̃ is initialized with random values and then
updated using Eq. (4) in Section 4.1. After that, we thresh-
old the learned soft partition matrix P̃ to obtain the hard
partition matrix P ∈ {0, 1}C×K . Denote the conventional
Softmax function as N , we apply Softmax normalization
on P̃ such that:

N
(
P̃
)
i,k

∈ [0, 1] , and
K∑

k=1

N
(
P̃
)
i,k

= 1,∀i ∈ {1...C}.

(A1)
Here N

(
P̃
)
i,k

represents the confidence value of the i-th
identity belonging to the k-th subset. Therefore, based on
the confidence values of each subset, we re-weigh the com-
putation of supervised contrastive loss [5] Lcls in Linv of
Eq. (4), as formulated below:

Lcls(Φ, ·, P̃, k) =∑
x∈X

N (P̃)y,k ·
∑
x+∈X

−log
eΦ(x)⊺Φ(x+)∑x* ̸=x

x*∈X eΦ(x)⊺Φ(x*)
,

(A2)

where X = {xi}Ni=1 represents the set of all the N train-
ing images, x+ is the corresponding positive image sharing
the same identity with x in X . Thus we can enable back-
propagation to optimize the partition matrix. After learning
soft partition P̃, the hard partition matrix P can be obtained
as below:

Pi,k =

{
0, if N

(
P̃
)
i,k

⩽ 0.5;

1, otherwise.
(A3)

A.1.2. Classification Loss Lcls in Section 4.2

For invariant feature learning, we optimize the objective
Linv in Eq. (6) where the definition of classification loss
Lcls has a variety of options. As our INV-REG is orthog-
onal to the existing face technologies, it can be plugged
into the latest classification losses without further modifi-
cation. In this section, we first illustrate the mathematical
forms of Lcls for Arcface and CIFP baselines adopted in
Section 4. Furthermore, we provide additional examples of
other marginal losses, including Cosface and Cosface-based
CIFP variation. Experimental results using these two losses
are presented in Section A.3.1.

Arcface. In margin-based losses, the objective is to opti-
mize the decision boundary in angular space based on the
L2 normalized weights and features. Denote the angle be-
tween the extracted feature Φ(x) and a certain weight vec-
tor of class y as θ, the corresponding angle is computed as
θy = arccos(Φ(x), fy). The Lcls of Arcface loss [2] is then
formulated as:

Lcls(Φ, f,P, k) =

−
∑
x∈Xk

log
es·cos(θyi+m)

es·cos(θyi+m) +
∑C

j=1,j ̸=yi
es·cosθj

,
(A4)

where s is the scale factor, and m is the addictive margin
in angular space. The decision boundary between the cur-
rent class yi and its negative classes j(j ̸= yi) is decided
by the margin m, where m = 0 degenerates to the conven-
tional Softmax cross-entropy loss, and m > 0 guarantees
the intra-class compactness and inter-class discriminability
with minimum m margin in feature space. In practice, m is
a predefined fixed value.

CIFP. Unlike Arcface which applies fixed margin to all
the samples, CIFP [9] assigns an adaptive margin to each
instance based on the false positive rate (FPR) indicator,
where hard samples (i.e., misclassified in training) have
larger margin values. CIFP can be regarded as margin-
based sample re-weighting to promote recognition consis-
tency across different groups. Depending on the utilized
marginal losses, CIFP can have different variations. In Sec-
tion 4, we adopted CIFP based on Arcface margin, and the



corresponding Lcls is expressed as follows:
Lcls(Φ, f,P, k) =

−
∑
x∈Xk

log
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where γ+

i and γ+
u are the instance and overall FPR indica-

tors respectively. Please refer to [9] for more details.

Cosface. Both Arcface and Cosface [8] target at maximiz-
ing inter-class variance and minimizing intra-class variance.
In comparison, Cosface removes the addictive margin to the
outside of cos(θ) and applies it on logit level as derived be-
low.

Lcls(Φ, f,P, k) =

−
∑
x∈Xk

log
es·(cosθyi+m)

es·(cosθyi+m) +
∑C

j=1,j ̸=yi
es·cosθj

.
(A6)

CIFP-Cosface. For the Cosface variation of CIFP, denoted
as CIFP-Cosface, both the fixed margin and the adaptive
FPR-based margin are applied on logit level. The formula
is given below.
Lcls(Φ, f,P, k) =

−
∑
x∈Xk

log
es·(cosθyi+m)
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(A7)

A.2. Experiment Details

This section discusses the details of training settings and
the estimation of demographic attribute labels (Section 5.1).

A.2.1. Training Settings

In the experiments, we employed SGD optimizer with
momentum of 0.9 and weight decay of 5e-4 to train the
models. The learning rate started at 0.1 and was reduced
by a factor of 10 after 110K, 190K, and 220K iterations.
The total number of training epochs was 21 for all the ex-
periments. We adopted the modified ResNet architecture
[4, 2] as the backbone, where Batch Normalisation (BN),
Dropout, fully connected layer, and BN were appended to
the last convolutional layer as the output. The embedding
size was 512. For partition learning using Eq. A2, we re-
ferred to [5] and appended a multi-layer perceptron to the
backbone, which consists of a single hidden layer of size
512 and output vector of size 128. For the training losses
in feature learning, we configured the scale as 64 and the
margin as 0.4 for Arcface and CIFP, and 0.35 for Cosface
and CIFP-Cosface. We adhered to the original work for the
other settings in CIFP.

Attributes #Samples #Identities

Race

Caucasian 3933K 58K
African 578K 9K

South Asian 537K 8K
East Asian 771K 11K

Gender
Female 2034K 25K
Male 3788K 61K

Table A1: Demographic distribution statistics of train set.

A.2.2. Demographic Attributes Estimation

To analyze the demographic statistics of the training data
in Section 5.1, as well as investigate the effect of ground-
truth partitions in Section 5.4, we employed pretrained at-
tribute classification models to estimate the demographic
attributes. In particular, the annotations of race (i.e., Cau-
casian, African, South Asian, and East Asian) and gender
(i.e., female and male) for the MS-Celeb-1M dataset [2, 3]
were predicted. A majority voting strategy was employed
in post-cleaning to ensure that images of the same iden-
tity have consistent demographic attributes. Statistics of
the cleaned attributes are shown in Table A1. We observe
that the dataset is heavily skewed towards Caucasian race
and male gender with more samples and identities than the
counterparts, leading to a degradation of recognition fair-
ness in conventional training.

A.3. Additional Analysis and Results
This section first presents experiments involving differ-

ent Lcls and demographic attributes. It then discusses the
ablation study on the choice of Linv , the setting of partition
set P , and the loss weight λ during partition learning. Fi-
nally, the analysis of causal effect learning and additional
visualization results are provided.

A.3.1. Additional Experiments

Results on Different Lcls. Referring to the definitions in
A.1.2, we plugged our INV-REG into Cosface and CIFP-
Cosface baselines. The models were trained with ResNet-
50 backbone, and evaluated on MFR dataset. We observe
in Table A2 that, our method demonstrates superiority over
both baselines with improved average accuracy and reduced
standard deviation. Moreover, the performance of underrep-
resented minority racial groups is greatly enhanced without
sacrificing the majority accuracy. This validates that our
method is orthogonal to diverse loss functions and brings
further performance benefits.
Results on Children and Masked Faces. In addition to
the multi-race attributes, we conducted evaluation on MFR
dataset for children and masked face attributes. The chil-
dren category contains 14K identities and 157K images,



Method African (AF) Caucasian (CA) South Asian (SA) East Asian (EA) Avg Std All
Cosface* [8] 74.50 84.81 82.55 53.84 73.92 12.21 78.67
Ours-Cosface 76.11 84.38 82.69 55.17 74.59 11.63 79.29

CIFP-Cosface* [9] 77.15 85.53 83.83 54.50 75.26 12.38 79.68
Ours-CIFP-Cosface 78.24 86.70 84.78 55.66 76.35 12.34 80.25

Table A2: Verification accuracy (%) on MFR dataset. (“*”: self-implemented results based on the officially released code.
“Ours-”: our results achieved by plugging our INV-REG into other baselines. “Avg”/“Std”: average/standard deviation of the
accuracy on four races. “All”: accuracy on all the samples.)

Method Children Masked
Arcface [2] 55.11 59.91

Ours-Arcface 55.65 63.10
CIFP [9] 59.21 65.03

Ours-CIFP 59.24 65.87
Cosface [8] 54.50 64.14

Ours-Cosface 55.19 65.02
CIFP-Cosface [9] 58.28 64.33

Ours-CIFP-Cosface 61.76 65.09

Table A3: Verification accuracy (%) on MFR dataset.

Method AF CA SA EA Avg Std
CIFP 77.26 85.52 83.76 55.74 75.57 11.86
Ours† 79.40 86.73 84.82 57.11 77.01 11.80
Ours 79.41 86.53 84.99 57.82 77.19 11.49

Table A4: Verification accuracy (%) on MFR dataset with
different Linv losses. (Ours†: REx in Eq (3). Ours: IRMv1
in Eq. (2).)

while the masked faces category contains 6.9K identities
with 6.9K masked images and 13K non-masked images.
For the evaluation metric, true accept rate (TAR) with false
accept rate (FAR) 1e-4 is obtained as in Table A3. Our INV-
REG method outperforms the baselines on both attributes
regardless of the marginal losses, demonstrating its gener-
alization ability under diverse demographic attributes.

A.3.2. Additional Ablation Study

Choice of Linv in Eq. (6). Section 3.2 discussed different
implementations of Linv , including IRMv1 [1] in Eq. (2)
and REx [6] in Eq. (3). To investigate the choice of Linv ,
we performed feature learning with both implementations.
Table A4 lists the evaluation results on MFR dataset with
CIFP baseline and ResNet-50 backbone. We observe that,
both implementations of Linv greatly improve the multi-
race performance with higher average accuracy and lower
standard deviation compared with CIFP. This validates the
effectiveness of invariant learning with IRM theory [1]. In
addition, Linv with IRMv1 achieves the top performance

Figure A1: Proportion of the demographic groups in the
partition subsets with different λ.

Figure A2: Accuracy (%) on MFR dataset with different λ.

on most attributes, especially on minority races (e.g., im-
proving East Asian from 55.74 to 57.82). Thus we adopted
IRMv1 in our experiments.
Loss Weight λ in Eq. (4). Section 5.4 presented the abla-
tion of loss weight λ in Linv for feature learning. Here we
further study the effect of λ for partition learning. We in-
creased λ from 0.1 to 0.7 and analyzed the resulted partition
subsets and verification accuracy on MFR. Figure A1 shows
that the distribution of demographic attributes among par-
tition subsets remains relatively consistent across various
λ. For example, subset 1) is dominated by African people
and Caucasian and South Asian females in all the settings.
Furthermore, Figure A2 depicts the average multi-race ac-



Method AF CA SA EA Avg Std
Arcface 74.54 84.43 81.47 53.27 73.43 12.18
Ours† 76.24 84.71 82.19 54.42 74.39 11.93
Ours 77.00 85.30 82.88 54.93 75.03 11.99

Table A5: Verification accuracy (%) on MFR dataset with
different settings of partition set P . (Ours†: keeping only
the most recent partition. Ours: maintaining all previously
learned partitions.)

Method Avg Std All
Arcface 73.19 ± 0.18 12.49 ± 0.27 77.68 ± 0.22

Ours-Arcface 75.07 ± 0.09 11.93 ± 0.08 79.28 ± 0.26

Table A6: Mean and variation of main results on MFR
dataset computed from 5 independent runs.

Method Avg (21) Std (21) Avg (23) Std (23)
CIFP baseline 75.57 11.86 75.67 11.88

Ours (1 partition) 76.75 12.20 76.74 12.32
Ours (2 partitions) 76.89 11.85 76.90 11.87
Ours (3 partitions) 77.19 11.49 77.30 11.48
Ours (4 partitions) 76.82 11.90 77.36 11.17

Table A7: Performance with longer training (# of epochs)
on MFR dataset.

curacy using different λ, where our method demonstrates
robustness by maintaining stable accuracy levels. The best
performing λ = 0.2 is adopted.
Partition set P . Table A5 lists the performance compari-
son using different settings in partition set P , i.e., retaining
all previously discovered partitions as described in Section
5, or keeping only the most recent partition. We observe
that both settings result in performance improvement over
the Arcface baseline with ResNet-50 backbone, yet main-
taining all previously discovered partitions yields superior
accuracy. We postulate that the model trained solely on the
most recent partition may again exhibit bias towards previ-
ously deconfounded demographic attributes in earlier parti-
tions. This is due to the model’s tendency to overfit to the
confounding demographic-specific features. On the other
hand, by maintaining all the learned partitions in P , diverse
demographic biases will be mitigated progressively in the
trained models, improving the robustness across all demo-
graphic groups.
Sensitivity to randomness. In the experiments, we utilized
Std to evaluate model fairness on different demographic
groups. To address the variability of the Std metric due
to randomness, we performed sensitivity study on MFR
dataset with 5 random seeds in Table A6, and the low vari-
ability validates the significance of our results.
Model Convergence. In Table A7, we extended Table 9

Figure A3: Visualization results of face images in the subset
of different partitions. Demographic attribute statistics of
each subset (same as Figure 7) are given.

results by training CIFP and our method with more epochs.
CIFP hardly benefits from more training, validating that it
converges at 21 epoch. In contrast, our method with more
partitions brings further improvement given more epochs,
validating that using more partitions requires larger number
of training epochs to fully converge.

A.3.3. Additional Analysis

Learning Causal Effect. The causal effect from the image
X to prediction Y is given by P (Y |do(X)) [7]. In Figure
3, P (Y |do(X)) can be expanded using the backdoor adjust-
ment formula:

P (Y |do(X)) =
∑
d

P (Y |X, d)P (D = d), (A8)

which corresponds to learning P (Y |X, d) within each con-
founder stratum (i.e., demographic group), and combining
them with the fixed population-level prior P (D). In con-
trast, conventional learning using the full training data cor-



Figure A4: Visualization of face images in partition of three subsets.

Figure A5: Visualization of face images in partition of four subsets.

responds to maximizing the likelihood P (Y |X), given by:

P (Y |X) =
∑
d

P (Y |X, d)P (D = d|X), (A9)

where the key difference is that the weight of each
P (Y |X, d) changes from the population-specific P (D =
d) to the sample-specific P (D = d|X). However, the ap-
pearance of X is affected by D, P (D = d|X) tends to have
an extremely large value on the demographic group D = d
that X belongs to.

Hence when group d contains spurious demographic-
specific context, the training can be dominated by
P (Y |X, d), such that the model recklessly captures the con-
text for prediction. Note that the key to capture the causal
effect P (Y |do(X)) is not to learn a representation indepen-
dent from the demographic attributes, but to fairly adjust
the contribution of each P (Y |X, d) by P (D = d), where
d indeed participates in the prediction by P (Y |X, d), i.e.,
the demographic attribute contains valid cue to differentiate
identities.
Visualization of Partition Subsets. In Figure 7, we pre-
sented the demographic distribution of different partition
subsets. Here we further visualized the face images in each
subset as shown in Figure A3. There exhibits a distinct

contrast between the two subsets in each partition. For in-
stance, in the first partition, subset 1) is primarily composed
of male faces whereas subset 2) contains mostly female im-
ages. This further verifies our analysis in Section 5.5 that
each partition encodes a certain demographic attribute. In
addition, we extended our analysis to visualize the partition
results when more than two subsets are utilized (Table 8),
i.e., number of subsets K = 3 and K = 4 as shown in
Figure A4 and Figure A5, respectively. We can see those
subsets of K = 3 behave with different preferences in the
demographic attributes, where subset 1) and 2) are domi-
nated by Caucasian males and females respectively, while
all other attributes are categorized into subset 3). As for
K = 4, in addition to the attributes of race and gender, age
is also considered during partition learning. As an illustra-
tion, both subset 2) and 3) consist mostly males of Cau-
casian and South Asian, yet the faces in subset 2) are older
in age compared to those in subset 3).

Failure Cases Analysis. We supplement more visualiza-
tion results on failure cases using RFW dataset. Due to
factors such as hairstyle, wearing hat, and head poses, Ar-
cface baseline presents low similarity scores for faces from
the same identity as shown in Figure A6a, yet high simi-



BFigure A6: Failure cases analysis on different races. (a)
Positive face pairs from the same identity. (b) Negative
face pairs from different identities. Similarity score of each
pair is given to compare Arcface versus our method (in bold
blue).

larity values for the negative face pairs of different identi-
ties in Figure A6b. In comparison, our INV-REG effectively
captures the causal feature that is invariant of the spurious
demographic-specific attributes, resulting in improved pos-
itive similarity and decreased negative similarity scores.
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