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1. Detailed Datasets

In this section, we will give a more detailed introduction
to the four public benchmark datasets used in the experi-
ments.

MNIST contains 10 classes from digit “0” to digit “9”,
including 60,000 training images and 10,000 testing images
of size 28×28 [5]. We select 10 images from each class
of “0”-“5” as the labeled set, and 30,000 images from all
classes as unlabeled data.

CIFAR-10 has 10 classes, each containing 6,000 natu-
ral images of size 32×32 [4]. We set the animal classes
(bird, cat, deer, dog, frog, horse) as seen classes and the rest
(airline, automobile, ship, trunk) as unseen classes. 2,400
labeled images (400 from each seen class) and 20,000 un-
labeled images (randomly sampled from all classes) are se-
lected for training dataset.

CIFAR-100 is an extension of CIFAR-10 which has 100
classes [4]. We set the first 50 classes as seen classes and
the rest as unseen classes. For training, 5,000 labeled im-
ages are selected (100 from each seen class) to construct
the labeled set, and the rest data settings remain the same as
CIFAR-10.

TinyImageNet is a subset of ImageNet [1], consisting
120,000 images of 200 classes. We resize all images to
32×32. The first 100 classes are set as seen classes and
the rest as unseen classes. We select 100 images from each
seen class to build the labeled set. Meanwhile, 40,000 im-
ages are randomly sampled from all classes to construct the
unlabeled set.

Note that, to investigate the effectiveness of our method
under different amounts of OOD data, we select OOD data
from the unseen classes of the unlabeled set according to
different mismatch ratios. For example, the 0% mismatch
ratio represents that there is no OOD data and all the un-
labeled data is from the seen classes. The 50% mismatch
ratio indicates half of the unlabeled data comes from the
unseen classes and the other half from the seen classes.
For reference, when all the images are labeled, our method
achieves 99.6%, 54.0%, 94.7% and 76.0% seen-class clas-
sification accuracy on MNIST, TinyImageNet, CIFAR-10
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Figure 1. Seen-class classification accuracy (%) of our method and
compared methods on MNIST and CIFAR-10 with different mis-
match ratios.

and CIFAR-100, respectively.

2. Qualitative Comparison with SOTA

Figure 1 shows the average accuracy of different SSL
methods over five runs with different mismatch ratios on
MNIST and CIFAR-10. From Figure 1(a), we can no-
tice that on the MNIST dataset, all the SSL methods
achieve satisfying performance when the mismatch ratio is
0. As the ratio increases, the performance of those con-
ventional SSL methods shows a rapid downward trend. Al-
though the SOTA safe SSL methods (e.g., DS3L [2], SAFE-
STUDENT [3]) is not that sensitive to the increasing ratio,
our method can perform better than them and reach 96.9%
averaged accuracy even when the ratio is 0.6. Figure 1(b)
displays the results on a more challenging dataset CIFAR-
10. Even at a mismatch ratio of 0, our method can surpass
the conventional SSL methods by 10% accuracy on aver-
age. When the ratio increases from 0 to 0.6, our method
maintains consistently higher performance than the SOTA
safe SSL methods by more than 5%. These results verify
the superiority of our method.

In Figure 2, we further visualize the confusion matri-
ces of ground-truth (GT), our method, SAFE-STUDENT,
and DS3L on CIFAR-10. Compared with DS3L, it’s easy
to find that our method reaches higher accuracy on almost
all the given classes. Even in comparison with the com-
petitive SAFE-STUDENT, our method can correctly clas-



Figure 2. Confusion matrices of the different methods over classes of bird, cat, deer, dog, frog, and horse on CIFAR-10.
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Figure 3. Seen-class classification accuracy (%) of hyperparame-
ters (a) τ1 and (b) τ2 under different values on CIFAR-100 with
mismatch ratio of 0.4.

sify much more instances on classes of bird, cat, frog, and
horse, and exhibit comparable performance on only two
other classes. These results intuitively prove the excellent
recognition ability of our method on most classes.

3. Analysis of Hyperparameters
In this experiment, we measure the two important hyper-

parameters on CIFAR-100 with a mismatch ratio of 0.4, in-
cluding τ1 as the threshold to determine whether the pseudo
labels will engage in positive learning or negative learning
and τ2 as the threshold in negative learning to decide if need
to update the complementary label. Figure 3 (a) and (b)
show the results under the wider values of τ1 and τ2. As
observed, the best accuracy of 72.5% is achieved when τ1
equals 0.95 and τ2 is set to 0.05.

4. Ablation Study on Self-supervised Learning
We conduct an ablation study on the rotation prediction

task in stage one. Compared with using cross entropy loss
only, the rotation prediction task can boost the seen-class
classification accuracy by 3.3% and 2.7% on CIFAR-10 and
CIFAR-100 datasets, respectively. Moreover, we also com-
pare the rotation prediction task with DINO and MoCo. We
find the rotation prediction task can still outperform them
by 1.7% and 0.7% averagely.

5. Insight of Feature Maps for ID&OOD
We provide extra results of the analysis of feature maps

from both ID and OOD data in this section. Notably, in
the CIFAR-10, we select the cat, bird, horse, and dog as ID
classes, and the truck, airplane, automobile, ship as OOD
classes.
Analysis of the Feature Vectors. To discover the more in-
tuitive behavior of feature vectors in the feature space, we
record the five channels with the highest response corre-
sponding to different categories of ID and OOD, as Table
1 shows. The results show that the different OOD classes
have similar high response channels, while the ID classes
have diverse ones. This further shows that the OOD fea-
tures are gathering in the feature space.
Visualization of Class Activation Maps. Inspired by the
Class Activation Maps (CAMs) [6], we can find out exactly
what areas the model is focusing on for ID and OOD data.
The original approach to generate class activation maps is
computing a weighted sum of the feature maps of the last
convolutional layer. The weight indicates the importance of
the corresponding feature maps in the final class activation
map. Intuitively, we can use the weights in the final linear
classifier, as they also indicate their importance in image
classification. However, in the safe SSL settings, there are
no corresponding weights for the OOD classes in the final
linear classifier. Thus, instead of using the weighted sum of
the feature maps, we visualize the feature maps separately.
In Figure 4, we visualize the highest value channel of each
ID class, respectively. The results show that the model can
successfully extract the high-level features of each class.
For the OOD data, we visualize the 89-th and 116-th fea-
ture maps in Figure 5 and 6. The figures have shown that
the model is mainly focusing on the class-agnostic low-level
features, which explains why the OOD classes show a gath-
ering tendency in the feature space.



Table 1. Highest response channels of ID and OOD classes.
Class Top-5 highest value channel

ID

Dog 88,6,121,46,34
Horse 25,118,62,49,14
Deer 23,67,96,51,76
Cat 60,124,99,5,2
Frog 35,72,50,8,127
Bird 22,11,74,120,61

OOD

Airplane 89,116,76,109,49
Truck 116,89,109,49,76
Automobile 89,116,22,11,76
Ship 116,89,109,49,76

Figure 4. CAMs for ID data.

6. Limitations

We further explore the limitations of our method regard-
ing the classification accuracy on various categories. As
the Figure 3 shows, we found that our method obtains only
82.8% and 86.0% accuracy on dog and cat categories, re-
spectively, about 11.2% and 8.0% lower than the accuracy
on other categories averagely. After further analysis, we at-
tribute the failure cases to the similar appearance between
dog and cat in some cases, or called inter-class similarity.
Regretfully, our current method did not consider how to bet-
ter discriminate classes with similar characteristics. We will
take this into consideration in future studies.

Figure 5. 89-th feature maps for OOD data.

Figure 6. 116-th feature maps for OOD data.
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