
A. Appendix
A.1. Datasets and Metrics
KITTI-3D. KITTI [21] is the most popular dataset in au-
tonomous driving scenario in the past decade. KITTI-3D is
a subset of KITTI dataset, which contains 7,481 and 7,518
frames for training and testing respectively. In each frame,
the stereo images, synchronized LiDAR sweep, calibration
files, and 3D bounding box annotations are provided. Fol-
lowing [11, 12], we split the training frames into a training
set (3,712 frames) and a validation set (3,769 frames), and
conduct the experiments in this split. Following [70], we
adopt the AP40 of 3D detection and Bird’s Eye View (BEV)
detection as metrics. We mainly focus on the Car category
on KITTI-3D in the main paper, and both 0.7 and 0.5 IoU
thresholds are considered. In this supplementary, we also
discuss the Pedestrian and Cyclist categories with 0.5 IoU
threshold.
nuScenes. nuScenes [6] is a large-scale autonomous driv-
ing dataset proposed in 2020. It provides about 40K anno-
tated frames of 10 categories for the panoramic view in the
autonomous driving scenario. In particular, there are 28,130
frames, 6,019 frames, and 6,008 frames for training, valida-
tion, and testing respectively (six images per frame). As for
evaluation metrics, nuScenes uses a 2D center error (in the
ground plane) based AP metric. Specifically, they consider
four thresholds, D = {0.5, 1, 2, 4}, for AP computing, and
average them over 10 categories to get the final mAP:
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where |C| and |D| are the category set and threshold set re-
spectively. Furthermore, five true positive metrics (TP met-
rics) are also considered, including Average Translation Er-
ror (ATE), Average Scale Error (ASE), Average Orientation
Error (AOE), Average Velocity Error (AVE), and Average
Attribute Error (AAE). For each TP metric, the mean TP
metric (mTP metric) are computed by:
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where k is the index of TP metrics, e.g. TP1 is ATE. Fi-
nally, the nuScenes detection score (NDS) is computed by
weighted averaging the above metrics:
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ScanNet V2. ScanNet V2 [17] is a richly annotated dataset
of 3D reconstructed of indoor scenes, and 3D box annota-
tions can be derived from the annotated meshes [58]. There

Figure 4: Learning curves on KITTI-3D without smoothing.

are about 1.2K training samples with 18 object different cat-
egories for hundreds of rooms. In this dataset, we adopt the
3D IoU based mAP as metric, and 0.25 and 0.5 IoU thresh-
olds are considered in model evaluation and error analysis.

A.2. Average Height Error
In the main paper, Table 8 shows that different evalua-

tion metrics have their preferences for models. Specifically,
on the nuScenes dataset, FCOS3D and BEVDet show sim-
ilar performances under the nuScenes metric, but there is a
large gap under the KITTI metric. To further explore this
phenomenon, we define Average Height Error (AHE) as the
1D Euclidean distance of the center height of the bounding
box, in order to bridge the gap between 2D IoU and 3D IoU.
Table 9 shows that the predicted center height of BEVDet is
significantly worse than that of FCOS3D. It reflects that the
nuScenes metric is more friendly to BEV-based methods.

mATE mAHE
FCOS3D 0.78 0.11
BEVDet 0.72 0.15

Table 9: Average Translation Error (ATE) and Average
Height Error (AHE) of BEVDet and FCOS3D for all cat-
egories on nuScenes validation set.

A.3. Implementation of TIDE3D
In the main paper, we introduce the design principles

of TIDE3D, and there are some minor implementation dif-
ferences on different datasets. Specifically, in KITTI-3D,
TIDE3D conduct error diagnosis for three categories with
three different settings separately. We directly compute the
3D IoU of detections and ground truths in the 3D space,
instead of computing the BEV IoU and multiplying it by
the 1D IoU at the height dimension. This design allows us
to get more accurate 3D IoU for the objects whose roll an-
gles and pitch angles are not zero (the roll angles and pitch
angles of objects are always zero in KITTI-3D, but not nec-
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Figure 5: Example error diagnosis results. We show the results of various models for the Pedestrian category and Cyclist
category on KITTI-3D validation set under the moderate setting with 0.5 IoU threshold. Specifically, we select CaDDn [63]
(image-based), PV-RCNN [67] (LiDAR-based) and MVX-Net [72] (fusion-based) to explore the bottleneck of detectors with
different modalities.

essarily for other datasets, such as nuScenes). In ScanNet
V2, the error distribution is collected over all categories, i.e.
based on mAP. For nuScene, we compute both �mAP and
�NDS for error diagnosis (we mainly focus on �mAP).
Besides, there is a hyper-parameter tf in TIDE3D, which is
used to identify whether a false positive belongs to ’local-
ization error’ or ’background error’. We set tf = 0.1 for
3D IoU based metrics and tf = 5 for center-distance based
metrics.

A.4. Training Curve
Figure 4 shows the un-smoothed learning curve of GUP-

Net in KITTI-3D (Figure 1, right), and we can see that the
performance fluctuates violently during training. Even in
the later stage of training, the AP40 is still unstable (espe-
cially for the 1⇥ schedule). Meanwhile, we also observe
the final performance fluctuates over multiple runs (similar
to Table 20 in DEVIANT [29]), and reporting mean values
of multiple runs is recommended for future work.

A.5. More TIDE3D Analysis
Pedestrian and Cyclist. Here we show the error diagno-
sis result and discussion for the Pedestrian and Cyclist cat-
egories in Figure 5. We can find that the major issue of
the image-based model (CaDDn) is still the inaccurate lo-
calization. For the LiDAR-based model (PV-RCNN), the
localization error is relatively small and mainly caused by
the inaccurate estimation of dimension (instead of location).
This is probably because LiDAR provides accurate location
information but can only capture the surface of the objects.
Besides, different from image-based methods, we can find
that background error accounts for a large part of the whole
error distribution. This is because LiDAR points lack color
information, and the models base on them easily generate

Figure 6: An typical error case for LiDAR-based methods.
A tree trunk is wrongly recognized as a cyclist due to the
lack of color information. Cars, cyclists, and pedestrians
are visualized with yellow, purple, and green boxes. Figures
are copied from [48].

false positives when they meet objects with similar struc-
tures to the objects of interest. See Figure 6 for a typical
detection result.
Error diagnosis in ScanNet V2. In addition to autonomous
driving scenario, TIDE3D can also be used in indoor scenes.
Here we use ScanNet v2 and VoteNet [58], which is a pow-
erful detection model based on point cloud, as an example.
Figure 7 shows that VoteNet has different error distributions



Figure 7: Example error diagnosis results of VoteNet on
ScanNet V2 validation set. We show the results with 0.5
IoU threshold (left) and 0.25 IoU threshold (right) for all
categories.

under different IoU thresholds. Specifically, under a strict
IoU threshold of 0.5, the model error is dominated by local-
ization error which is caused by the inaccurate estimation of
center and dimension (note the bounding box annotation in
ScanNet V2 is axis-aligned and the model does not need to
predict the rotation angle). For a loose threshold of 0.25, the
localization error is mitigated and the overall performance
is limited by more factors, including ranking error, missing
error, or background error.

In order to analyze the diverse problems encountered in
detecting different categories of objects, we can further an-
alyze the AP of a specified single category. As an example,
we look at the ‘picture’ which is the worst performing cat-
egory as shown in Figure 8. Since the pictures usually have
small sizes and easily blend into the background point cloud
of the wall, they are quite unrecognizable especially when
there is no color information provided by the image data.
Besides, incomplete annotations also confuse the detector’s
recognition of the pictures. Therefore, the main problems
besides ranking error are missing error and background er-
ror for this category.

A.6. Discussion about Training Recipes
We observe the common choices of training recipes show

varying impacts on different models. Here we give some
notes on model training:
i. The optimal training recipes are different for different
models. For example, the detection models with deformable
convolutions [96], such as [44, 92], require a lower learning
rate (e.g. 1.25e�4) for stable training, while other models
with similar network architecture [51, 46] perform better at
a larger one (e.g. 1.25e�3).

Figure 8: Error diagnosis of VoteNet for ‘picture’ cate-
gory. The error distribution is collected with the IoU thresh-
old of 0.25 on ScanNet V2. A training sample with several
‘picture’ items is provided to show the low quality of an-
notation, which is a major reason leading to the high back-
ground and missing errors. We use blue boxes to denote the
ground truth items. Best viewed in color with zoom-in.

ii. Some data augmentations may have similar effects. For
example, applying random crop (at a small-scale) and ran-
dom shift separately can improve the accuracy, while ap-
plying both of them still get similar performance. This sug-
gests that these two operations may work in a similar way,
i.e. applying geometric transformations to the images, thus
making the models sensitive to the location of objects.
iii. For different datasets/metrics, the same augmentation
may have different effects. For example, random crop
works well in KITTI-3D dataset, while the performance
change of applying this operation on nuScene is relatively
inconspicuous. This is mainly caused by the difference in
data size and evaluation metrics, and the custom training
recipes for different application scenarios are required.
iv. Data augmentation is an effective way to improve
the performance of detection models, even in large-scale
datasets [6, 75]. However, it is difficult to align geomet-
ric changes in the 2D image plane and the 3D world space,
resulting in limited augmentation strategies. The popular
BEV pipeline allow us to conduct data augmentation in the
BEV space, which is a key factor for the success of such
methods. Meanwhile, this also indicates that the algorithm
performance can be improved by designing data augmenta-
tion strategies in the future.

A.7. Ranking Error in TIDE3D
We have shown that the ranking error, which is ignored

in TIDE, is a major error type in 3D object detection sys-
tems. Different from other error types, ranking error in-



Figure 9: PR curves. We show the PR curves before/after applying the ranking oracle (left) and the localization oracle
(right). The baseline is GUPNet and the metric is AP40 on KITTI-3D validation set under the moderate setting.

volves multiple predictions, and fixing this type may af-
fect other error types. For example, in Section 6.3, we
show the effects of 3D confidence with TIDE3D and find
that both the localization error and ranking error are signif-
icantly reduced (similar phenomenon is shown in Table 2
of TIDE [2]), which is caused by the complicated interac-
tions between multiple predictions. We argue that, although
improving the quality of localization and confidence may
show similar numbers in localization error, they achieve
this in a completely different way and can be further iden-
tified. Specifically, we present the Precision-Recall (PR)
curves before/after applying localization and ranking ora-
cles in Figure 9. We can find that the ranking (misalign-
ment) oracle improves the AP by maximizing the precision
at each recall level, while the localization oracle corrects the
false positive to true positive. All the figures we presented
will be given from TIDE3D.


