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A. Comparison with Flomo [7]

Although Flomo [7] is the closest work to our
FlowChain, we didn’t include the results of Flomo in Sec.4,
because the reproducible training code or pretrained model
is unavailable. Furthermore, Flomo reports the scores based
on the train-validation-test splits different from ours. Thus,
we made a fair comparison along with the evaluation in the
Social-GAN [3] paper on ETH/UCY dataset and Trajnet [5]
paper on SDD dataset. We used the official implementa-
tion of Flomo for comparison. Note that KDE is applied to
the generated trajectories of Flomo for estimating temporal
densities, as mentioned in Sec. 2 of the main paper.

The results of trajectory prediction accuracy are shown
in Tab. 5 and Tab. 6. Our FlowChain achieves better results
than Flomo on most splits on ETH/UCY and SDD.

The accuracy and computational time of density estima-
tion of Flomo are compared with FlowChain as shown in
Tab. 7. Flomo takes a much longer time for density es-
timation (i.e., 12397.4 milliseconds) because Flomo needs
KDE for temporal density estimation. Furthermore, the ac-
curacy of density estimation of Flomo is lower than that
of FlowChain over EMD on Simfork dataset (i.e, 1,834 vs.
1.408) and log-probability on ETH/UCY dataset (i.e, -24.05
vs. -0.26). We also visualize the estimated densities of
Flomo and FlowChain in Fig. 9 and Fig. 10. On Simfork
dataset, Flomo estimated too large and elliptical-shape den-
sities, unlike the tight round-shape ground truth distribution,
as shown in the first row of Fig. 9. On ETH/UCY dataset
also, Flomo could not suggest tight densities. These poor
performances on density estimation are the limitations of
KDE on limited samples.

B. Effectiveness of the FlowChain Architecture

We validated the effectiveness of the FlowChain archi-
tecture by changing each component. We replace our three
choices: CIF [1], RealNVP [2], and Trajectron [6] encoder.
As mentioned in Sec. 3 of the main paper, we use condi-
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Figure 9. Temporal estimated densities of Flomo and ablated
models on Simfork dataset.

tional CIFs as the base normalizing flow model for better
expressive power. For replacing CIF, vanilla conditional
normalizing flow models are employed, denoted by “w/o
CIF”. As mentioned in Sec. 4 of the main paper, we use a
three-layer RealNVP inside the CIF and Trajectron++ en-
coder for a temporal-social encoder. For replacing Real-
NVP choice, we choose the MAF [4] instead of RealNVP,
denoted by “with MAF”. For replacing the Trajectron++ en-
coder, one transformer layer is applied for encoding the ob-
served past trajectory, denoted by “w/o Trajectron encoder”.



Table 5. Quantitative comparison on ETH/UCY dataset with Best-of-20 metrics. Scores are in meters. Lower is better.
ETH HOTEL UNIV ZARA1 ZARA2 MeanMethod ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Flomo [7] 0.58 1.02 0.34 0.63 0.29 0.52 0.22 0.39 0.28 0.53 0.34 0.62
FlowChain (Ours) 0.55 0.99 0.20 0.35 0.29 0.54 0.22 0.40 0.20 0.34 0.29 0.52
FlowChain w/o CIF 0.70 1.35 0.27 0.53 0.33 0.67 0.23 0.45 0.20 0.39 0.35 0.68
FlowChain with MAF 0.57 1.07 0.22 0.37 0.29 0.55 0.23 0.43 0.21 0.40 0.30 0.56
FlowChain w/o Trajectron encoder 0.62 1.23 0.34 0.72 0.33 0.62 0.23 0.42 0.21 0.39 0.35 0.68

Table 6. Quantitative comparison on SDD dataset with Best-of-
20 metrics. Scores are in pixels. Lower is better.

Method ADE FDE
Flomo [7] 10.78 17.36
FlowChain (Ours) 9.93 17.17
FlowChain w/o CIF 9.70 17.13
FlowChain with MAF 14.58 24.70
FlowChain w/o Trajectron encoder 18.92 30.94
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Figure 10. Temporal estimated densities of Flomo and ablated
models on ETH/UCY dataset.

Note that this transformer layer encodes each trajectory in-
dependently and thus cannot account for the social interac-
tions.

The results of trajectory prediction accuracy are shown
in Tab. 5 and Tab. 6. By replacing CIF, the accuracy de-
grades on ETH/UCY but gets slightly better on SDD. This
is because the multi-modal densities are less observed in
SDD and thus models without CIF still fit the SDD dataset.
However, as shown in Fig. 9, models without CIF do not
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Figure 11. Temporal estimated densities on the synthesized uni-
cycle motion dataset.

fit the multi-modal density and estimate thin densities. We
further confirmed the poor accuracy of density estimation
without CIF by comparing the accuracy of density estima-
tion, as shown in Tab. 7. We choose conditional CIFs as
the base normalizing flow models because our main focus
is on better and faster density estimation. As mentioned in
Sec. 3.2 of the main paper, we can see a little fluctuation in
the estimated densities by models with CIFs. However, this
fluctuation can be ignored because estimated densities are
smooth enough especially for the real data like ETH/UCY
dataset, as shown in Fig. 10.

By replacing RealNVP, the accuracy degrades on both
ETH/UCY and SDD. We find RealNVP a good fit for our
chaining architecture.

By replacing the Trajectron encoder, the accuracy de-
grades especially on SDD because the simple transformer
encoder cannot consider the social interactions as men-
tioned above. Furthermore, the Trajctron encoder needs
less computational cost than a simple transformer encoder
despite accounting for the social interactions, as shown in
Tab. 7.

C. Experiment on Unicycle Motion Dataset.

Our Simfork dataset, which only has simple bifurcations,
cannot fully show the advantage of our method over Gaus-
sian Mixture Models. Therefore, we created a synthesized
dataset based on the unicycle motion model. As shown in
Fig 11, FlowChain successfully captures the challenging
banana-like shape distributions and produces reliable up-
dates, which is hard for a mixture Kalman filter assuming
Gaussian distributions.



Table 7. Accuracy and computational time comparison of density estimation. Scores are in milliseconds for computational time. While
lower is better for EMD on Simfork dataset, higher is better for log-probablity on ETH/UCY dataset. We report the averaged EMD and
log-probability over the 12 prediction steps.

Method Comp. Time Accuracy of Density Estimation
All w/o KDE EMD ↓ log-probability ↑

Flomo [7] 12397.4 24.2 1.834 -24.05
FlowChain (Ours) 37.0 - 1.408 -0.26
FlowChain w/o CIF 26.7 - 3.313 -9.48
FlowChain with MAF 44.2 - 2.475 -0.55
FlowChain w/o Trajectron encoder 38.7 - 2.369 -0.33
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