
A. Rectangle Size Derivation
As mentioned in Section 4.4 of the main paper, a ray that

reaches the environment map is assigned a color taken as
the average color over an axis-aligned rectangle in spheri-
cal coordinates, where the shape of the rectangle depends on
the ray’s direction and the material’s roughness at the ray’s
origin. We modify the derivation of the area of the rectan-
gle from GPU Gems [10]. Let N be the number of samples,
p(ω̂i) be the probability density function of a given sample
direction ω̂i for viewing direction ω̂o, and let H and W be
the height and width of the environment map (i.e. its polar
and azimuthal resolutions). The density d(ω̂i) of environ-
ment map pixels at a given direction must be inversely pro-
portional to the Jacobian’s determinant, sin θi, and it must
also satisfy:

HW =

∫ 2π

0

∫ π

0

d(ω̂i) sin θidθidϕi, (16)

and therefore:

d(ω̂i) =
HW

2π2 sin θi
. (17)

The number of pixels per sample, which is the area of the
rectangle, is then the total solid angle per sample, Np(ω̂i)
multiplied by the number of pixels per solid angle:

∆θ ·∆ϕ =
Np(ω̂i)

d(ω̂i)
, (18)

where ∆θ is the polar size of the rectangle, and ∆ϕ is its
azimuthal size, i.e. the rectangle is ∆θ×∆ϕ, in equirectan-
gular coordinates.

As mentioned in Section 4.4 of the main paper, the aspect
ratio of the rectangle is set to:

∆θ

∆ϕ
= sin θi, (19)

which yields:

∆θ =

√
2π2

N

HW
p(ω̂i) · sin θi, (20)

∆ϕ =

√
2π2

N

HW
p(ω̂i). (21)

B. BSDF Neural Network Parameterization
Once we have sampled the incoming light directions ω̂i

and their respective values L(p, ω̂i), we transform them
into the local shading frame to calculate the value of the
neural shading network h. We parameterize the neural net-
work with 2 hidden layers of width 64 as h(p, ω̂o, ω̂i, n̂),
where p is the position, ω̂o, ω̂i are the outgoing and incom-
ing light directions, respectively, and n̂ is the normal. How-
ever, rather than feeding ω̂o and ω̂i to the network directly,

we follow the schema laid out by Rusinkiewicz [34] and pa-
rameterize the input using the halfway vector ĥ and differ-
ence vector d̂ within the local shading frame F (n̂), which
takes the world space to a frame of reference in which the
normal vector points upwards:

T = [0, 0, 1]
⊤ × n̂ (22)

F (n̂) =
[
T, n̂× T, n̂

]⊤
(23)

ĥ = F (n̂)
ω̂i + ω̂o

∥ω̂i + ω̂o∥2
(24)

d̂ = F (ĥ)ω̂i (25)

where × is the cross product. Finally, we encode these two
directions using spherical harmonics up to degree 4 (as done
in Ref-NeRF [41] for encoding view directions), concate-
nate the feature vector x from the field at point p, and pass
this as input to the network h.

C. Optimization and Architecture

To calculate the normal vectors of the density field, we
apply a finite difference kernel, convolved with a 3×3 Gaus-
sian smoothing kernel with σ = 1, then linearly interpo-
late between samples to get the resulting gradient in the 3D
volume. We supervise our method using photometric loss,
along with the orientation loss of Equation 7. Like TensoRF,
we use a learning rate of 0.02 for the rank 1 and 2 tensor
components, and a learning rate of 10−3 for everything else.
We use Adam [19] with β1 = 0.9, β2 = 0.99, ε = 10−15.
Similar to Ref-NeRF [41], we use log-linear learning rate
decay with a total decay of dw = 10−3 and a warmup of
Nw = 100 steps and a decay multiplier of mw = 0.1 over
NT = 3 · 104 total iterations. This gives us the following
formula for the learning rate multiplier for some iteration i:

[
mw + (1−mw) sin

π

2
clip

(
i

Nw
, 0, 1

)]
ei/NT log(dw)

(26)
We initialize the environment map to a constant value

of 0.5. Finally, we upsample the resolution of Ten-
soRF from 323 up to 3003 cube-root-linearly at steps
500, 1000, 2000, 3000, 4000, 5500, 7000, and don’t shrink
the volume to fit the model.

To further reduce the variance of the estimated value of
the rendering equation (see Equation 15), we use quasi-
random sampling sequences. Specifically, we use a Sobol
sequence [36] with Owens scrambling [30], which gives the
procedural sequence necessary for assigning an arbitrary
number of secondary ray samples to each primary ray sam-
ple. We then apply Cranley-Patterson rotation [12] to avoid
needing to redraw samples.



D. Additional Results
Tables 2-5 contain full per-scene metrics for our method

as well as ablations and baselines. Visual comparisons are
also provided in Figures 7-17.



PSNR ↑ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 35.83 18.59 24.40 27.24 23.71 27.51 21.87 17.10 18.02 19.16 24.49 15.25 14.35 18.06
NVDiffRec1 40.13 24.10 27.13 30.77 30.58 26.66 32.03 29.07 25.03 30.72 33.05 31.18 24.53 24.68
NVDiffRecMC1 37.91 21.93 25.84 28.89 29.06 25.57 28.13 26.46 25.64 29.03 30.56 25.32 22.78 18.59
Ref-NeRF2 47.90 25.70 30.82 47.46 34.21 29.68 35.83 36.25 35.41 36.76 37.72 33.91 25.79 30.28
Ours, no integral image 42.61 18.36 25.32 21.70 31.15 24.82 30.35 30.16 25.62 30.03 33.34 28.44 24.04 25.78
Ours, analytical derivative 43.57 21.57 27.72 22.75 31.08 28.61 30.49 30.23 28.70 31.19 33.55 27.83 24.15 25.40
Ours, single bounce 45.23 26.91 30.13 38.38 31.39 34.32 32.57 32.83 30.92 32.49 35.07 29.24 24.99 27.32
Ours, no neural 45.21 25.73 29.03 37.41 30.99 29.63 30.62 31.00 29.37 31.29 33.88 28.10 24.52 26.44
Ours 45.29 27.52 30.28 38.41 31.47 34.38 32.27 32.98 31.19 32.41 35.23 29.24 24.96 27.37

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 3: PSNR Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

SSIM ↑ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 .990 .805 .910 .947 .922 .953 .890 .812 .837 .904 .894 .861 .823 .756
NVDiffRec1 .993 .898 .938 .949 .959 .931 .969 .949 .923 .977 .973 .970 .916 .833
NVDiffRecMC1 .990 .842 .913 .849 .942 .877 .932 .909 .911 .961 .945 .937 .906 .732
Ref-NeRF2 .998 .922 .955 .995 .974 .958 .984 .981 .983 .992 .984 .983 .937 .880
Ours, no integral image .994 .734 .895 .753 .959 .880 .946 .946 .896 .962 .954 .953 .905 .794
Ours, analytical derivative .995 .798 .925 .790 .959 .930 .948 .943 .936 .972 .958 .950 .910 .787
Ours, single bounce .996 .909 .951 .983 .962 .971 .964 .966 .957 .978 .969 .959 .922 .835
Ours, no neural .996 .903 .945 .980 .959 .947 .949 .952 .945 .972 .960 .954 .916 .816
Ours .996 .917 .951 .983 .960 .969 .956 .963 .959 .977 .964 .952 .917 .828

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 4: SSIM Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

LPIPS ↓ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 .022 .194 .091 .179 .150 .089 .122 .208 .182 .108 .163 .144 .188 .343
NVDiffRec1 .022 .180 .057 .194 .097 .134 .027 .037 .104 .033 .038 .030 .070 .208
NVDiffRecMC1 .029 .243 .086 .346 .131 .215 .080 .075 .096 .057 .089 .076 .096 .319
Ref-NeRF2 .004 .095 .041 .059 .078 .075 .017 .018 .022 .007 .022 .019 .059 .139
Ours, no integral image .013 .285 .077 .399 .065 .180 .055 .031 .074 .042 .051 .039 .077 .180
Ours, analytical derivative .011 .235 .053 .353 .071 .118 .052 .031 .048 .028 .047 .043 .075 .190
Ours, single bounce .008 .114 .033 .047 .063 .050 .032 .018 .026 .020 .034 .033 .065 .135
Ours, no neural .008 .115 .039 .058 .071 .090 .053 .026 .036 .027 .045 .036 .070 .161
Ours .010 .104 .034 .046 .069 .055 .044 .024 .026 .022 .046 .044 .068 .149

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 5: LPIPS Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

MAE◦ ↓ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 6.634 9.749 8.844 0.700 22.514 2.324 18.569 40.244 18.986 26.053 28.572 35.974 21.696 43.265
NVDiffRec1 0.358 6.908 3.783 2.756 3.869 8.766 4.968 12.670 7.068 2.850 8.228 3.909 5.641 17.027
NVDiffRecMC1 0.551 5.746 2.020 0.592 6.490 3.518 4.659 12.570 2.428 2.807 7.449 3.535 5.439 17.865
Ref-NeRF2 9.234 42.870 14.927 1.548 12.240 29.484 19.852 24.469 9.531 24.938 13.211 41.052 27.853 31.707
Ours, no integral image 1.194 24.230 8.374 30.961 5.997 13.855 4.987 8.902 9.679 3.813 5.108 5.431 7.882 17.854
Ours, analytical derivative 0.879 12.994 3.444 15.734 6.534 4.983 4.463 9.331 3.294 2.607 4.936 5.247 7.059 17.222
Ours, single bounce 0.812 4.691 2.600 1.563 5.274 1.927 3.194 8.508 2.934 2.501 3.643 4.970 5.537 14.515
Ours, no neural 0.637 6.298 2.767 1.561 5.884 3.234 3.950 9.147 3.233 2.568 4.379 4.986 6.079 14.560
Ours 0.752 4.474 2.598 1.563 5.352 1.924 3.195 8.452 2.868 2.523 3.546 4.949 5.326 14.726

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 6: MAE Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].



N
o v

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 7: Results on the ball scene, compared to NVDiffRec [29] and NVDiffRecMC [17].



N
o v

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 8: Results on the coffee scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 9: Results on the teapot scene, compared to NVDiffRec [29] and NVDiffRecMC [17].



N
ov

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 10: Results on the toaster scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 11: Results on the materials scene, compared to NVDiffRec [29] and NVDiffRecMC [17].



N
o v

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 12: Results on the drums scene, compared to NVDiffRec [29] and NVDiffRecMC [17].



N
o v

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 13: Results on the ficus scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 14: Results on the hotdog scene, compared to NVDiffRec [29] and NVDiffRecMC [17].



N
ov

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 15: Results on the mic scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 16: Results on the ship scene, compared to NVDiffRec [29] and NVDiffRecMC [17]. Since our method, NVDiffRec,
and NVDiffRecMC do not model refraction, they are not able to handle the water well.



N
o v

el
V

ie
w

N
or

m
al

s
E

n v
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 17: Results on the lego scene, compared to NVDiffRec [29] and NVDiffRecMC [17].


