A. Rectangle Size Derivation

As mentioned in Section 4.4 of the main paper, a ray that
reaches the environment map is assigned a color taken as
the average color over an axis-aligned rectangle in spheri-
cal coordinates, where the shape of the rectangle depends on
the ray’s direction and the material’s roughness at the ray’s
origin. We modify the derivation of the area of the rectan-
gle from GPU Gems [10]. Let N be the number of samples,
p(w;) be the probability density function of a given sample
direction w; for viewing direction w,, and let H and W be
the height and width of the environment map (i.e. its polar
and azimuthal resolutions). The density d(w;) of environ-
ment map pixels at a given direction must be inversely pro-
portional to the Jacobian’s determinant, sin 6;, and it must
also satisfy:

27 ™
0 0

and therefore:

W
"~ 272sin6;

d(@;) a7
The number of pixels per sample, which is the area of the
rectangle, is then the total solid angle per sample, Np(w;)

multiplied by the number of pixels per solid angle:
Np(@;)

d(w;)
where A# is the polar size of the rectangle, and A¢ is its
azimuthal size, i.e. the rectangle is Af x A¢, in equirectan-
gular coordinates.

As mentioned in Section 4.4 of the main paper, the aspect
ratio of the rectangle is set to:

AO- A = (18)

2—2 = sin6;, (19)
which yields:
N
Af = /2w Wp(wi) - sin 6;, (20)
N o
Ap =/2n? WP(“’J (2D

B. BSDF Neural Network Parameterization

Once we have sampled the incoming light directions w;
and their respective values L(p,w;), we transform them
into the local shading frame to calculate the value of the
neural shading network h. We parameterize the neural net-
work with 2 hidden layers of width 64 as h(p,w,,w;, n),
where p is the position, w,, w; are the outgoing and incom-
ing light directions, respectively, and 1 is the normal. How-
ever, rather than feeding @, and w; to the network directly,

we follow the schema laid out by Rusinkiewicz [34] and pa-
rameterize the input using the halfway vector h and differ-
ence vector d within the local shading frame F'(11), which
takes the world space to a frame of reference in which the
normal vector points upwards:

T=100,0,1" xn (22)

F()=[T, axT, a] (23)
> ~ (L’i'i_‘bo

h=F 24

v ey

d= F(h)w; (25)

where X is the cross product. Finally, we encode these two
directions using spherical harmonics up to degree 4 (as done
in Ref-NeRF [41] for encoding view directions), concate-
nate the feature vector « from the field at point p, and pass
this as input to the network h.

C. Optimization and Architecture

To calculate the normal vectors of the density field, we
apply a finite difference kernel, convolved with a 3 x 3 Gaus-
sian smoothing kernel with 0 = 1, then linearly interpo-
late between samples to get the resulting gradient in the 3D
volume. We supervise our method using photometric loss,
along with the orientation loss of Equation 7. Like TensoRF,
we use a learning rate of 0.02 for the rank 1 and 2 tensor
components, and a learning rate of 10~ for everything else.
We use Adam [19] with 8; = 0.9, 82 = 0.99,¢ = 10715,
Similar to Ref-NeRF [41], we use log-linear learning rate
decay with a total decay of d,, = 103 and a warmup of
N,, = 100 steps and a decay multiplier of m,, = 0.1 over
N7 = 3 - 10" total iterations. This gives us the following
formula for the learning rate multiplier for some iteration i:

My + (1 — my,) sin gclip <J\;’ 0, 1)] e/N7 log(d,,)
" (26)

We initialize the environment map to a constant value
of 0.5. Finally, we upsample the resolution of Ten-
soRF from 322 up to 300% cube-root-linearly at steps
500, 1000, 2000, 3000, 4000, 5500, 7000, and don’t shrink
the volume to fit the model.

To further reduce the variance of the estimated value of
the rendering equation (see Equation 15), we use quasi-
random sampling sequences. Specifically, we use a Sobol
sequence [36] with Owens scrambling [30], which gives the
procedural sequence necessary for assigning an arbitrary
number of secondary ray samples to each primary ray sam-
ple. We then apply Cranley-Patterson rotation [12] to avoid
needing to redraw samples.

D. Additional Results

Tables 2-5 contain full per-scene metrics for our method
as well as ablations and baselines. Visual comparisons are
also provided in Figures 7-17.

PSNR 1 teapot toaster car ball coffee helmet | chair lego materials mic hotdog ficus drums ship

PhySG! 3583 1859 2440 2724 2371 2751 | 21.87 17.10 18.02 19.16 2449 1525 1435 18.06
NVDiffRec! 40.13 24.10 27.13 30.77 30.58 26.66 | 32.03 29.07 25.03 30.72 33.05 31.18 2453 24.68
NVDiffRecMC! 3791 2193 2584 2889 29.06 2557 | 28.13 26.46 25.64 29.03 3056 2532 2278 18.59
Ref-NeRF? 4790 2570 30.82 4746 3421 29.68 | 35.83 36.25 3541 36.76 37.72 3391 2579 30.28

Ours, no integral image 42.61 1836 2532 21.70 31.15 24.82 | 3035 30.16 25.62 30.03 3334 2844 24.04 2578
Ours, analytical derivative | 43.57 21.57 27.72 2275 31.08 28.61 | 3049 30.23 28.70 31.19 33,55 27.83 24.15 2540

Ours, single bounce 4523 2691 30.13 3838 31.39 3432 | 32.57 32.83 3092 3249 3507 2924 2499 2732
Ours, no neural 4521 25773 29.03 3741 3099 29.63 | 30.62 31.00 2937 3129 33.88 28.10 2452 2644
Ours 4529 2752 3028 3841 3147 3438 | 32.27 3298 31.19 3241 3523 2924 2496 27.37

[un

requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 3: PSNR Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

SSIM 1 teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG! .990 .805 910 .947 922 953 .890 .812 .837 .904 .894 861 823 756
NVDiffRec! 993 .898 938 949 959 931 969 .949 923 977 973 970 916 .833
NVDiffRecMC! .990 842 913 849 942 877 932 909 911 .961 945 937 906 732
Ref-NeRF? 998 922 955 995 974 958 984 981 983 .992 984 983 937 .880
Ours, no integral image .994 734 895 753 959 .880 946 946 .896 .962 954 953 905 794
Ours, analytical derivative 995 798 925 790 959 930 948 .943 936 972 958 .950 910 .787
Ours, single bounce 996 909 951 .983 962 971 964 .966 957 978 969 959 922 835
Ours, no neural 996 903 945 980 959 947 949 952 945 972 960 954 916 816
Ours 996 917 951 983 .960 969 956 .963 959 977 964 952 917 .828

—

requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 4: SSIM Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

LPIPS | teapot toaster car ball coffee helmet ‘ chair lego materials mic hotdog ficus drums ship
PhySG! .022 194,091 179 150 089 122 208 182 .108 163 144 188 343
NVDiffRec? 022 180 .057 .194 .097 34027 037 104 .033 .038 .030 .070 .208
NVDiffRecMC! .029 243 086 .346 131 215 .080 .075 .096 .057 .089 .076 .096 319
Ref-NeRF? .004 095 .041 .059 .078 075 017 .018 022 .007 022 .019 .059 .139
Ours, no integral image .013 285 .077 399 .065 180 .055 .031 074 .042 051 .039 .077 180
Ours, analytical derivative 011 235 .053 353 .071 118 052 .031 .048 .028 047 .043 075 .190
Ours, single bounce .008 114 .033 .047 .063 .050 .032 .018 .026 .020 .034 .033 .065 .135
Ours, no neural .008 15 .039 .058 .071 090 .053 .026 036 .027 045 .036 .070 .161
Ours .010 104 .034 .046 .069 055 .044 .024 .026 .022 046 044 .068 .149

-

requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 5: LPIPS Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

MAE° | teapot toaster car ball coffee helmet | chair lego materials mic hotdog ficus drums ship

PhySG! 6.634 9.749 8.844 0.700 22514 2324 | 18.569 40.244 18.986 26.053 28.572 35974 21.696 43.265
NVDiffRec! 0358 6908 3783 2756 3.869 8.766 | 4.968 12.670 7.068 2.850 8228 3909 5.641 17.027
NVDiffRecMC* 0.551 5746 2.020 0592 6490 3518 | 4.659 12570 2428 2807 7.449 3535 5439 17.865
Ref-NeRF? 9.234 42870 14.927 1.548 12.240 29.484 | 19.852 24.469 9.531 24938 13211 41.052 27.853 31.707
Ours, no integral image 1.194 24230 8374 30961 5997 13855 | 4987 8.902 9.679 3813 5108 5431 7.882 17.854
Ours, analytical derivative | 0.879 12.994 3.444 15734 6.534 4983 | 4463 9.331 3294 2607 4936 5247 7.059 17.222
Ours, single bounce 0812 4.691 2600 1563 5274 1927 | 3.194 8508 2934 2501 3.643 4970 5537 14.515
Ours, no neural 0.637 6298 2767 1561 5884 3234 | 3950 9.147 3233 2568 4379 4986 6.079 14.560
Ours 0.752 = 4474 2598 1563 5352 1.924 | 3.195 8452 2.868 2523 3546 4949 5326 14.726

! requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 6: MAE Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

Novel View

Normals

Environment

Ground Truth

Figure 7: Results on the ball scene, compared to NVDiffRec [

Ours

NVDiffRec

NVDiffRecMC

] and NVDiffRecMC [17].

Novel View

Normals

Environment

Novel View

Normals

Environment

Ground Truth

Figure 8: Results on the coffee scene, compared to NVDiffRec [

Ground Truth

Figure 9: Results on the feapot scene, compared to NVDiffRec [

Ours

Ours

NVDiffRec

NVDiffRec

NVDiffRecMC

] and NVDiffRecMC [17].

NVDiffRecMC

] and NVDiffRecMC [17].

Novel View

Normals

Environment

Normals Novel View

Environment

Ground Truth

Ours

NVDiffRec

Figure 10: Results on the foaster scene, compared to NVDiffRec [29]

Ground Truth

Ours

NVDiffRec

Figure 11: Results on the materials scene, compared to NVDiffRec [

NVDiffRecMC

and NVDiffRecMC [17].

NVDiffRecMC

] and NVDiffRecMC [17].

Novel View

Normals

Environment

Ground Truth

Figure 12: Results on the drums scene, compared to NVDiffRec [

Ours

NVDiffRec

NVDiffRecMC

] and NVDiffRecMC [17].

Novel View

Normals

Environment

Novel View

Normals

Environment

Ground Truth

Figure 13: Results on the ficus scene, compared to NVDiffRec [

Ground Truth

Figure 14: Results on the hotdog scene, compared to NVDiffRec [

Ours

Ours

NVDiffRec

NVDiffRec

NVDiffRecMC

] and NVDiffRecMC [17].

NVDiffRecMC

] and NVDiffRecMC [17].

Novel View

e
:
Z
=
(]
g
g
2
=
4]
Ground Truth Ours NVDiffRec NVDiffRecMC
Figure 15: Results on the mic scene, compared to NVDiffRec [29] and NVDiffRecMC [17].
z
2
>
o
>
5
Z
5
:
Z
=
(]
g
g
2
=
4]

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 16: Results on the ship scene, compared to NVDiffRec [29] and NVDiffRecMC [17]. Since our method, NVDiffRec,
and NVDiffRecMC do not model refraction, they are not able to handle the water well.

Novel View

Normals

Environment

Ground Truth

Figure 17: Results on the lego scene, compared to NVDiffRec [

Ours

NVDiffRec

NVDiffRecMC

] and NVDiffRecMC [17].

