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1. Additional explanations
In this section, we provide additional details related to evaluation metrics and our implementation.

1.1. Evaluation metrics

• Average Accuracy: Similar to [10, 9], we calculate the average accuracy at the end of the final task T (AT ) as the
mean of the accuracies across all the incremental tasks, including the initial task. The accuracy at task t (at) is the
fraction of correctly classified samples from classes learned up to and during task t. AT allows a fair comparison by
summarizing a method’s performance across all the incremental stages.

AT =
1

T + 1

T∑
t=0

at (1)

• Average Forgetting: In line with [10, 9], the forgetting of the classes learned in task j after the model has been trained
on task t (f t

j ), is measured by the difference between the maximum accuracy for task j during the learning process and
the accuracy for the same task at the end of training with task t.

f t
j = ( max

i∈{j,...,t−1}
ai,j)− at,j (2)

where ai,j is the accuracy of classes first learned in task j after the model has been trained on task i.

Consequently, the average forgetting at the end of the task t (t > 0 ) is defined as Eq. 3 below. We report the average
forgetting at the end of the final task T (FT ).

Ft =
1

t

t−1∑
j=0

f t
j (3)

1.2. Implementation details

For a fair comparison, we adapted the same backbone architecture, ResNet-18 [1] as [5, 9, 8, 10]. We use two optimizers,
Optimθ and Optimϕ to jointly train the feature extractor (Fθ) and the set of CVs (Mϕ). During the training of the base
task, we use the same optimizers and learning rate scheduling as [9] to optimize Optimθ in CIFAR-100, TinyImageNet,
ImageNet-Subset datasets. The detailed parameters used to train Optimθ and Optimϕ are listed in Table 1. The concrete
implementation can be found in our code attached to the supplementary materials.



Table 1. Detailed parameter values used to train Optimθ and Optimϕ

CIFAR-100 TinyImageNet ImageNet-Subset ImageNet-1K

#
of

ep
oc

hs

100 50 100 50

Optimθ Optimϕ Optimθ Optimϕ Optimθ Optimϕ Optimθ Optimϕ

O
pt

im
iz

er

Adam SGD Adam SGD SGD SGD SGD SGD

B
as

e
ta

sk

initial
learning
rate of
0.001 de-
cayed by
0.1 every
45 epochs

initial
learning
rate of
5 decayed
by 0.1
every 20
epochs

initial
learning
rate of
0.001 de-
cayed by
0.1 every
45 epochs

initial
learning
rate of
5 decayed
by 0.1
every 20
epochs

initial learning
rate of 0.1 de-
cayed by 0.1 at
steps 80, 120,
and 150 (The
base task is
trained for 160
epochs similar to
[9] )

initial learn-
ing rate of
5 decayed
by 0.1 every
20 epochs

initial learn-
ing rate of
0.01 de-
cayed by
0.1 at steps
20, 40, and
60 (The
base task is
trained for
80 epochs)

initial
learning
rate of
5 decayed
by 0.1
every 20
epochs

In
cr

em
en

ta
lt

as
ks

initial
learn-
ing rate of
0.0001 de-
cayed by
0.1 every
45 epochs

initial
learning
rate of
0.5 de-
cayed by
0.1 every
20 epochs

initial
learn-
ing rate of
0.0001 de-
cayed by
0.1 every
45 epochs

initial
learning
rate of
0.5 de-
cayed by
0.1 every
20 epochs

initial learn-
ing rate of
0.0001 decayed
by 0.1 every 45
epochs

initial learn-
ing rate of
0.5 decayed
by 0.1 every
20 epochs

initial learn-
ing rate of
0.001 de-
cayed by
0.1 at steps
20, and 40

initial
learning
rate of
0.5 de-
cayed by
0.1 every
20 epochs

Parameter values of τ = 10,K = 15, ϵ = 0.9, emin = 0.910, α = 0.001 were used for all four datasets.

1.3. Experiments on loss weights

The average accuracy and average forgetting values obtained for the ablation study conducted when introducing loss
coefficients and their combinations are shown in Table 2. Due to the imbalance between the number of prototypes representing
the old classes and the number of samples representing the new classes, we empirically determined that larger coefficients
(λ1 = 10 and λ2 = 10) are crucial for Lt

KD (knowledge distillation) and L̂t
DCE (prototype-based distance cross-entropy) to

effectively mitigate the feature drift and the forgetting of old classes. This aligns with previous works (PASS [9], IL2A [8])
which also introduce larger coefficients for knowledge distillation and prototype-based cross-entropy loss.

Following the same reasoning, we introduced a larger coefficient (λ3 = 10) for L̂t
NA (Neighborhood-Adaptation loss for

old class prototypes) and no scaling factor for Lt
NA (Neighborhood-Adaptation loss for new class samples). However, this

setting (the last row in Table 2) only resulted in the stability either remaining the same or improving marginally, while the
plasticity decreased. We recognize the importance of adequately learning new classes and, therefore, chose not to include
a larger scaling factor for L̂t

NA. However, we agree that further investigations are needed to determine the optimal scaling
values and consider this a subject for future explorations.



Table 2. Average Accuracy (%) and Average Forgetting (%) obtained for the ablation study conducted using CIFAR-100 to determine
coefficients values used for L̂t

DCE (λ1), Lt
KD ( λ2) and L̂t

NA (λ3). The proposed setting is bolded.

λ1 λ2 λ3

Average Accuracy ↑ Average Forgetting ↓
T=5 T=10 T=20 T=5 T=10 T=20

1 1 1 69.74 66.81 62.05 14.44 25.83 34.4

10 1 1 70.14 69.27 67.21 7.21 11.3 13.64

1 10 1 69.55 67.5 62.42 13.73 19.39 29.371

1 1 10 69.37 67.15 62.92 15.14 23.27 32.61

10 10 1 70.44 69.04 67.42 6.9 9.65 9.08

1 10 10 69.36 67.67 63.46 14.7 19.57 26.23

10 1 10 70.56 68.66 67.02 7.21 12.45 14.22

10 10 10 70.17 68.92 67.67 6.2 9.28 8.17

2. Additional analysis
2.1. Detailed values at the incremental tasks

We report the detailed accuracy values obtained by NAPA-VQ at each incremental stage under the three incremental
scenarios (T = 5, T = 10, and T = 20) in Tables 3, 4, and 5.

Table 3. The accuracy at each incremental task under the setting of T = 5 scenario.

Dataset
Task

Average
0 1 2 3 4 5

CIFAR-100 81.15 75.28 71.47 67.70 64.75 62.30 70.44

TinyImageNet 61.2 56.84 54.38 51.43 48.42 44.38 52.77

ImageNet-Subset 80.57 75.34 70.46 66.62 62.70 59.19 69.15

ImageNet-1K 68.83 61.36 56.25 51.37 48.12 44.71 55.11

Table 4. The accuracy at each incremental task under the setting of T = 10 scenario.

Dataset
Task

Average
0 1 2 3 4 5 6 7 8 9 10

CIFAR-100 80.8 78.25 74.82 72.16 70.56 68.40 66.11 64.65 62.60 61.19 59.92 69.04

TinyImageNet 61.31 59.00 56.88 54.46 53.34 51.71 50.31 48.77 46.89 44.54 42.44 51.78

ImageNet-
Subset

80.59 78.97 75.77 72.64 70.32 68.16 66.20 64.55 61.54 59.95 57.93 68.83

ImageNet-1K 68.89 63.53 60.24 57.2 54.72 51.97 49.47 47.1 45.30 43.19 41.86 53.04

2.2. New class accuracy values at the incremental tasks

We report the new class accuracy values obtained by NAPA-VQ at each incremental stage under the three incremental
scenarios (T = 5, T = 10, and T = 20) in Tables 6, 7, and 8.

2.3. Comparison with SOTA on ImageNet-Subset

We plot the detailed accuracy curves obtained using NAPA-VQ and other compared methods for ImageNet-Subset in Fig.
1 and show that NAPA-VQ maintains higher accuracies over incremental tasks.



Table 5. The accuracy at each incremental task under the setting of T = 20 scenario.

Dataset
Task

0 1 2 3 4 5 6 7 8 9

CIFAR-100 82.16 79.87 78.75 77.06 75.72 73.95 72.09 70.06 68.40 67.08

TinyImageNet 60.63 58.93 58.42 56.88 55.53 54.11 52.86 52.18 51.19 50.49

ImageNet-Subset 81.48 78.93 75.68 74.26 72.40 70.88 70.03 67.09 65.51 64.11

ImageNet-1K 68.86 63.99 60.60 58.96 56.48 54.28 51.62 49.32 47.30 45.35

Dataset
Task

Average
10 11 12 13 14 15 16 17 18 19 20

CIFAR-100 66.35 64.79 64.06 62.86 61.80 60.87 59.95 58.59 57.78 57.14 56.53 67.42

TinyImageNet 49.36 48.54 47.57 46.59 45.56 44.40 43.50 42.41 41.09 40.19 39.27 49.51

ImageNet-
Subset

62.09 60.49 59.08 57.53 56.26 55.51 53.28 51.60 50.50 50.03 48.21 63.09

ImageNet-1K 43.63 41.95 39.86 38.48 37 35.67 34.59 33.3 32.07 31.22 30.21 45.46

Table 6. The novel class accuracy at each incremental task under the setting of T = 5 scenario.

Dataset
Task

0 1 2 3 4 5

CIFAR-100 81.15 58.6 61.03 56.53 56.83 55.4

TinyImageNet 61.2 47.3 56.13 46.47 44.43 47.53

ImageNet-Subset 80.57 59.53 56 53.53 52.33 51

ImageNet-1K 68.83 53.22 51.08 47.6 49.38 44.75

Table 7. The novel class accuracy at each incremental task under the setting of T = 10 scenario.

Dataset
Task

0 1 2 3 4 5 6 7 8 9 10

CIFAR-100 80.8 65.27 51.27 58.4 67.47 60.53 57.27 65.53 54.93 61.93 60.4

TinyImageNet 61.31 55.2 48.87 48.6 61.87 50.67 48.33 50.2 42.6 52 45.4

ImageNet-
Subset

80.59 75.73 55.07 54.94 62.93 61.87 57.2 58.8 59.47 67.07 47.6

ImageNet-1K 68.89 55.87 56.9 50.97 55.23 47.83 49.13 46.57 45.73 42.57 42.77

Figure 1. Detailed Accuracy curves showing the Top-1 Accuracy at each incremental step for ImageNet-Subset



Table 8. The novel class accuracy at each incremental task under the setting of T = 20 scenario.

Dataset
Task

0 1 2 3 4 5 6 7 8 9

CIFAR-100 82.16 67 77.33 68.33 68.55 61.67 56.44 45 50.44 65.44

TinyImageNet 60.63 54.67 61.2 49.47 46.27 47.33 48.27 61.33 60.8 48.93

ImageNet-Subset 81.48 62.89 37.78 66.67 60.89 75.11 68.67 38.89 66.67 65.56

ImageNet-1K 68.86 60 57.4 57.6 61.13 55.47 53.27 58.8 55.4 50.67

Dataset
Task

10 11 12 13 14 15 16 17 18 19 20

CIFAR-100 68.44 55.78 58.33 54 49.67 62.33 56.33 45.67 56.78 55.56 66.11

TinyImageNet 40 37.33 41.6 34.67 52.13 35.6 36.8 52.27 46.53 28.93 40.27

ImageNet-
Subset

58.89 60.22 49.33 61.34 51.56 67.56 59.33 63.79 63.56 68.22 30.45

ImageNet-1K 50.33 49.47 52.93 49.07 52 47 42.8 43.4 40.6 41.8 42.07

2.4. Extended comparison of SOTA

This section includes the extended versions of Tables 1 and 2 from the main text (Tables 9 and 10) which compare the
average accuracy and average forgetting values of NAPA-VQ with various other state-of-the-art (SOTA) methods including
EWC [3], LwF MC [5], MUC [4], SDC [7] and ABD [6]. Our method outperforms all the compared NECIL approaches and
performs better than the compared exemplar-based approaches which store 20 exemplars per class for replay.

Table 9. Average Accuracy of NAPA-VQ compared to the existing methods on the three datasets. T represents the number of incremental
tasks and E represents the number of exemplars used. Results for the methods with * were extracted from [10]. The improvement of
NAPA-VQ compared to the best available SOTA is shown in red. NAPA-VQ obtains an average improvement of 5%, 2%, and 4% for
CIFAR-100, TinyImageNet, and ImageNet-Subset respectively.

Methods
CIFAR-100 TinyImageNet ImageNet-Subset

T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

E
=2

0

iCARL* 58.56 54.19 50.51 45.86 43.29 38.04 - 60.79 -

EEIL* 60.37 56.05 52.34 47.12 45.01 40.50 - 63.34 -

UCIR* 63.78 62.39 59.07 49.15 48.52 42.83 - 66.16 -

E
=0

EWC* 24.48 21.20 15.89 18.80 15.77 12.39 - 20.40 -

LwF MC* 45.93 27.43 20.07 29.12 23.10 17.43 - 31.18 -

MUC* 49.42 30.19 21.27 32.58 26.61 21.95 - 35.07 -

SDC* 56.77 57.00 58.90 - - - - 61.12 -

PASS* 63.47 61.84 58.09 49.55 47.29 42.07 66.84 61.80 54.46

IL2A 65.61 59.09 58.82 47.02 44.48 39.68 - - -

ABD 58.38 53.49 47.73 - - - - - -

SSRE* 65.88 65.04 61.70 50.39 48.93 48.17 - 67.69 -

NAPA-VQ 70.44
(+4.56)

69.04
(+4)

67.42
(+5.72)

52.77
(+2.38)

51.78
(+2.85)

49.51
(+1.34)

69.15
(+2.31)

68.83
(+1.14)

63.09
(+8.63)

Average Improvement 5% 2% 4%



Table 10. Average Forgetting of our methods compared to the other methods on the three datasets. T represents the number of incremental
tasks and E represents the number of exemplars used. Results for the methods with * were reproduced in [10]. The improvement of our
method compared to the best available SOTA is shown in red. NAPA-VQ exhibits a significant reduction in forgetting by an average of
10%, 3%, and 9% for CIFAR-100, TinyImageNet, and ImageNet-Subset respectively.

Methods
CIFAR-100 TinyImageNet ImageNet-Subset

T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

E
=2

0

iCARL* 24.90 28.32 35.53 27.15 28.89 37.40 - - -

EEIL* 23.36 26.65 32.40 25.56 25.91 35.04 - - -

UCIR* 21.00 25.12 28.65 20.61 22.25 33.74 - - -

E
=0

LwF MC* 44.23 50.47 55.46 54.26 54.37 63.54 - - -

MUC* 40.28 47.56 52.65 51.46 50.21 58.00 - - -

PASS* 25.20 30.25 30.61 18.04 23.11 30.55 19.66 25.85 30.98

IL2A 28.72 39.86 40.70 19.74 29.90 39.99 - - -

ABD 21.80 23.92 32.76 - - - - - -

SSRE* 18.37 19.48 19.00 9.17 14.06 14.20 - 8.30 -

NAPA-VQ 6.90
(-11.47)

9.65
(-9.83)

9.08
(-9.92)

9.08
(-0.09)

10.81
(-3.25)

9.31
(-4.89)

7.17
(-12.49)

9.67
(+1.37)

14.49
(-16.49)

Average Improvement 10% 3% 9%

2.5. Detailed accuracy curves for the ablation study

In this section, we examine the effect of the proposed components in NA-VQ and NA-PA over the incremental steps by
studying the detailed accuracy curves and forgetting curves obtained during our Ablation Study (Main text Sec 4.5). As shown
in Fig. 2, the baseline model that utilizes both Categorical Cross Entropy Loss (CCE) and Knowledge Distillation Loss (KD)
exhibits a rapid decline in accuracy and a rapid increase in forgetting as the incremental steps progress. While replacing
CCE with Distance-based Cross Entropy Loss (DCE) initially leads to an accuracy improvement in all three incremental
scenarios, a sudden drop in accuracy occurs in later increments. This drop results from the failure to retain the performance
of the old classes (increased forgetting) and brings the performance close to that achieved by using CCE. This demonstrates
that DCE alone is inadequate for maintaining good discrimination between classes throughout the incremental steps. The
introduction of Neighborhood Adaptation Loss (NA) in addition to DCE eliminates the aforementioned sudden accuracy drop
while significantly reducing forgetting due to its strong discriminatory properties.

The addition of old class representative prototypes leads to a significant improvement in performance over the incremental
steps compared to previous experiments that did not use any old class representative information. The prototypes augmented
with the NA-PA technique perform better than those augmented with simple Gaussian Noise in all incremental steps. This
improvement can be attributed to the neighborhood awareness property in NA-PA which generates prototypes of the old
classes using the feature representations of their neighboring classes, aiding to identify optimal decision boundaries and to
reduce the misclassification rate. Over the incremental steps, this improvement was much more pronounced, demonstrating
the effectiveness of our approach when dealing with a larger number of tasks.

2.6. Impact of the connectivity factor K

To assess the impact of the connectivity factor K on the algorithm’s performance and efficiency, we experimented with
different K-values ranging from 2 to 50 for the T = 10 incremental scenario in the CIFAR-100 dataset. The resulting
average accuracy values and total training times of the models are plotted in Fig. 3. We observe that increasing the value of
K leads to an increase in average incremental accuracy, which can be attributed to a wider neighborhood being considered to
improve both decision boundary learning and prototype augmentation. However, beyond a certain point, the accuracy tends
to fluctuate around the same level even with an increase in the K-value. This could be attributed to the inclusion of distant
CVs as neighbors, who may not experience significant repulsion forces due to their distance, resulting in a similar overall
performance to smaller values of K.

With respect to the efficiency of the algorithm, the running time of the model increases as the K-value is increased. This



Figure 2. Detailed accuracy and forgetting curves for the ablation study

is due to the wider neighborhood being considered during topology approximation resulting in a larger number of updates
during the CV adaptation. To maintain algorithm efficiency without compromising performance, K = 15 was determined to
be desirable.

Figure 3. The variation of average accuracy and the total training time when the K-value is varied between 2 and 50.

2.7. Visualization of the NA-PA-generated prototypes

In order to demonstrate the effectiveness of the prototypes generated, we utilize t-SNE [2] to visualize the genuine feature
representations of the old classes with their corresponding NA-PA-generated prototypes. It should be noted that the genuine
feature representations of these old classes are not accessible in current or subsequent task training thus the prototypes gener-
ated for each old class should ideally approximate their true feature distributions. The obtained visualization is then compared
with a set of prototypes generated using the Gaussian augmentation technique used in previous works [9]. As depicted in
Fig. 4, the prototypes generated for each old class using Gaussian augmentation are clustered around the corresponding
class center (mean prototype) and fail to account for the variations within the class. However, the prototypes generated using



NA-PA exhibit a more dispersed distribution within each class’s feature space aiding in better representing the old classes.
Therefore with NA-PA, we can generate a set of prototypes that captures the variations in the old classes without having to
store the covariance matrix of each class [8].



Figure 4. Visualization of the prototypes generated using Gaussian augmentation [9] and the proposed NA-PA technique. Each color
represents a single class. (a) Prototypes generated using the Gaussian augmentation are located around the center of the class, failing
to account for the variations within each class. (b) Prototypes generated using NA-PA are spread out in the feature space of each class
producing high-impact prototypes that enables better discrimination between classes.
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