
Supplementary Materials: SURFSUP : Learning Fluid Simulation for
Novel Surfaces (Paper ID 12656)

Contents
1 Videos for Rollouts in Paper 1

2 Comparing SURFSUP to the GNS Baseline – further analysis 1
2.1 Success modes of SURFSUP vs. GNS Baseline – qualitative results 2
2.2 Quantitative Comparison to GNS on Complex Scenes . 3
2.3 Improving Efficiency of Simulation . 3

2.3.1 Brief Study: Inference Times . 3

3 Rollouts on Other Test Sets 3

4 Ablation Study 4

5 Datasets: Details 6
5.1 Prim-Shapes Dataset . 6
5.2 Primitives-Unions . 6
5.3 Complex-Scenes, SIREN training . 6
5.4 ShapeNet chairs/bowls, DeepSDF training . 7
5.5 Mountain scene . 7

6 Experimental Details 7
6.1 Metrics: Additional details . 8

7 Design 8
7.1 Implementation Details . 8
7.2 Further Analysis of Design Solutions . 9

1 Videos for Rollouts in Paper
Please see the rollout_videos folder for full videos corresponding to all of the rollouts in the paper. We have included
rollouts for complex scenes (room, coral, and notably multiple videos of the mountain scene in the Mountain_videos
folder); also see several of the Shapenet objects. We have also included rollouts for objects in the primitives dataset and
in the OOD test sets (e.g. primitives+unions). The website also includes several of the rollouts.

2 Comparing SURFSUP to the GNS Baseline – further analysis
Here we include further details of our comparison to the GNS baseline.

1

https://surfsup.cs.columbia.edu/

Figure 1: Comparing the baseline and our method on the coral object. Our method filters water through the fine structure
of the coral while the baseline cannot account for the geometry.

2.1 Success modes of SURFSUP vs. GNS Baseline – qualitative results
We illustrate in Fig. 1 that GNS is unable to handle the resolution required to accurately model fluid interacting with the
coral (discussed in main paper, Sec. 5). As a result the fluid falls through the finer tentacles and misses the geometry
entirely. By contrast, our method endows surfaces with infinite resolution inside the fluid simulator, leading to accurate
fine-grained fluid dynamics on the coral and other objects. This illustrates the limits of explicit methods which are
transcended by our approach for handling complex geometry in larger scenes.

We also note that SURFSUP scales accurately to large scenes. As discussed in the paper, GNS scales up with the
number of surface particles needed for the scene. Since particle size is constant at radius r (for a desired numerical
accuracy of the simulation), an N ×N ×N scene requires approximately O(N3) particles to represent at full resolution.
By contrast, we can represent large scenes with reasonably small changes to the SDF network fθ’s capacity. Below is a
reproduction of Fig. 7 in the main paper, showing that our method handles the large room scene accurately while the
baseline’s predictions cause fluid to leak into the furniture surfaces due to insufficient resolution. See the videos (folder
Complex_scenes (vs. baseline)) for full rollouts on both the coral and room scenes.

Figure 2: Comparing SURFSUP and the GNS baseline on the room scene, highlighting different areas of the scene.
Reproduction of Fig. 7, main paper.

2

2.2 Quantitative Comparison to GNS on Complex Scenes
In the main paper we compare SURFSUP and GNS on several complex scenes (‘Complex-Scenes‘ dataset, Ln TODO).
The objects included the coral, room, and lion scene in the main paper, as well as four other objects (one other lion
statue, and the armadillo and two dragon objects in the Stanford 3D Scanning Repository). We show the average metrics
in the main paper (Table 1, Row 5), and show the results for each object in Table 1 below. SURFSUP significantly
outperforms the baseline on all objects/scenes and all metrics, evidencing its ability to handle large scenes and complex
object geometry.

Objects/Metrics Chamfer Chamfer Surface Surface Penetration Mean Inside Surface
Coral (Ours) 0.096 119.79 6782 -0.0028
Coral (Baseline) 0.380 602.66 102783 -0.051

0.053 62.3233 215685 -0.0256Lion #1 0.380 602.66 102783 -0.0507
0.1153 125.3949 9526 -0.00654Room Scene 1.1133 877.5509 36106 -0.0181
0.0437 16.7388 16899 -0.0153Lion #2 0.0645 74.6547 379329 -0.0273

0.046 9.6486 490 -0.000376Dragon #1 0.0593 39.5942 160354 -0.0219
0.0412 8.5804 202 -0.01488Dragon #2 0.0467 18.4627 36290 -0.0169
0.0515 11.1678 34005 -0.0131Armadillo 0.058 21.3429 60364 -0.0248

Table 1: Comparing performance of SURFSUP and the GNS baseline each object in ‘Complex-Scenes’.

2.3 Improving Efficiency of Simulation
In the main paper we show how SURFSUP compares to a baseline with more surface particles. For the baseline (not for
our method) there is an inherent tradeoff: more surface particles increases surface resolution and simulation accuracy,
while also increasing the size of the particle graphs. Our method overcomes this tradeoff quite starkly: SURFSUP
outperforms even a 10000-particle baseline on the room scene that would incur significant computational cost. Below
we include a larger-size copy of Fig. 7 in the main paper (a scene in the Primitives+Unions test set). In Fig. 4 we show
how SURFSUP on the room scene outperforms higher-resolution baselines (125.39 Chamfer Surface vs. 194.98 for the
10k-particle baseline). Note finally that SURFSUP successfully simulates a mountain scene (Fig. 8, main paper) that
would be essentially impossible for GNS (requiring >1m particles), emphasizing our ability to scale where particles
cannot.

2.3.1 Brief Study: Inference Times

Inference times can be highly variable, and we choose to report graph sizes in the main paper as a more reliable measure
of computational cost. To provide a brief and rough timing comparison, we broadly find that SURFSUP ’s speed for
fluid rollouts is faster than the GNS baseline; experiments (benchmarked on a single A6000 GPU) suggest that we are
37% faster then the baseline on the PrimShapes test set and 13% faster on the Chairs test set (where SURFSUP involves
evaluating neural SDFs). This can be attributed to the fewer particles and smaller graph sizes entailed by our method
compared to the baseline. Naturally this advantage becomes more evident with the size and complexity of the scenes.
We find both methods 2-3x faster than the classical simulator (evaluated on a 40-core CPU).

3 Rollouts on Other Test Sets
Figure 5 shows rollouts of our method on the other test sets we describe in the paper, such as the primitives test set (Fig.
5a, the primitives+unions test set (Fig. 5c), funnels (Fig. 5d), and ShapeNet chairs (Fig. 5b). For all examples, our

3

Figure 3: Reproduction of Fig. 7 in the main paper, larger size.
.

Figure 4: Comparing our method vs. the baseline on the room scene, as the number of surface particles increase from
2000 to 10000. The metric is the Chamfer Surface Distance.

.

predictions closely match the ground-truth fluid trajectory, indicating the accuracy and realism of our fluid rollouts.

4 Ablation Study
We performed an ablation study on the SDF features provided to the model during training (Table 2). We found that
providing only the SDF value and not the gradient (which conveys the particle’s orientation w.r.t. the surface), degraded
performance near the surface significantly; for example penetration went from 0 to > 30000 particles. Providing no
SDF information at all and only fluid particles performs very poorly as expected.

4

(a) Rollout on a torus. (b) Rollout on chair (OOD)

(c) Rollout on a union of primitives (OOD) (d) Rollout on funnels (OOD)

Figure 5: Predicted rollouts of SURFSUP for several examples in our test sets. For each rollout, the top row shows our prediction
and the bottom row shows the ground-truth simulation.

5

Chamfer Cham-Surface Num Inside

SURFSUP 0.0297 4.704 0
Value-only 0.0319 10.782 30433
No SDF 0.0815 45.463 193071

Table 2: Ablating SDF features on the PrimShapes test set.

5 Datasets: Details
We provide further details about our dataset creation. To sample trajectories for all datasets we use a “classical”
(non-neural) particle-based fluid simulator. In particular, we use the SPlisHSPlasH simulator [1], a 3D particle-based
fluid simulator based on the SPH technique. We extract 800 time-steps from each simulation (with ∆t = 0.005); this
corresponds to 4000 time-steps of the classical simulator (∆t = 0.001), which requires smaller time-steps for physical
stability. In all our simulations we simulate water.

5.1 Prim-Shapes Dataset
The Prim-Shapes Dataset consists of five primitive shapes: spheres, boxes, cylinders, cones, and toruses. There are 1000
simulations in the training set (200 for each shape), and 100 in the test set. For each simulation, we initialize a 1× 1× 2
m box containing the simulation, generate the primitive shape with random shape parameters, apply random rotations
and translation, and initialize a block of fluid above the shape. The primitive shapes are parametrized as follows:

• Sphere: Parametrized by radius r, chosen uniformly in the range [0.25, 0.5].

• Box: Parametrized by side lengths sx, sy, sz , each chosen uniformly in the range [0.4, 0.7].

• Cylinder: Parametrized by radius r chosen in range [0.15, 0.35] and height h chosen in range [0.4, 0.75].

• Cone: The ‘capped cone’ is parametrized by height h ([0.4, 0.7]), its bottom radius r1 ([0.2, 0.4]) and the top
radius r2 (with r1 > r2). r2 is fixed at 0.01 to approximate a true cone.

• Torus: The torus is constructed by revolving a circle with ‘inner’ radius’ r2 around an axis of revolution coplanar
with the circle, where the ‘outer radius’ r1 is the distance from the axis to the center of the torus. The ranges are
[0.2, 0.4] for r1 and [r1/4, 3r1/4] for r2, ensuring there is a hole in the torus.

See the excellent resource here for the expressions of these SDFs. Each shape is rotated randomly, then translated to the
bottom of the container and randomly on the container bottom. When computing the SDF, these operations are encoded
by inverse transformations on the query point. For the classical simulator (which takes in meshes and re-converts to
SDFs), we apply these transformations to a mesh generated from the SDF via Marching Cubes. Finally a block of fluid
(each dimension random in [0.4, 0.5]) is initialized at a random height directly above the shape. Since r = 0.015 is the
particle radius, this generates 1900-3800 particles per simulation. Example initializations illustrating the dataset across
the five shapes are shown in Figure 6.

5.2 Primitives-Unions
The Prim-Unions test set is generated by applying pairwise unions to all five shapes. There are a total of 5C2 = 10
combinations. For each combination, we choose one shape as the ‘base shape’ and union the other shape so that it sits
on top of the base shape. See Fig. 5c for an example.

5.3 Complex-Scenes, SIREN training
The Complex-Scenes dataset consists of seven scenes decribed in Sec. 2.2. For each scene, we train a SIREN model [4],
where the input is an xyz oriented point cloud of the object or scene. SIREN training produces fine-grained implicit
representations with better detail and higher-quality gradients; SURFSUP can utilize these increasingly high-quality
neural implicits for predicting dynamics. The SIREN scales the object into a cube with side length 2; we situate this

6

https://iquilezles.org/articles/distfunctions/

Figure 6: Examples of initial states in the PrimShapes dataset, for the five different shapes in our dataset.
.

object inside a 2× 2× 3 container and drop fluid above the object. This is the setup for the six objects (Fig. 4 main
paper, left); the exception is the room scene, where we drop fluid inside the room. Please see the github for SIREN
training details.

5.4 ShapeNet chairs/bowls, DeepSDF training
We also train a DeepSDF model [2] on the chair and bowl categories in ShapeNet. DeepSDF is a variational ‘auto-
decoder’ model, which learns latent codes {zi} for the training shapes along with the weights of an SDF network
Fθ(p, z). A Gaussian prior is applied to the latent codes so that they cluster around the origin. We utilize the training
pipeline in [2] for extracting SDFs from triangle meshes and sampling points for training supervision (e.g. oversampling
points near the surface). We train DeepSDF on a total of 5827 chairs from ShapeNet. We also train a separate DeepSDF
model on the much smaller bowl category. We then create ground-truth simulation by initializing a block of fluid above
the object in a 1× 1× 2m container.

5.5 Mountain scene
The mountain scene (Fig. 8, main paper) is obtained by training a SIREN on a triangle mesh of the Puncak Jaya
mountains, Indonesia. The scene is scaled to within a side-2 cube for SIREN training. For scaling to the larger size in
the paper, we apply a uniform scaling transform with a scale factor s to the SDF, i.e. Fsc = sF (s−1p). Note that SDFs
can be scaled arbitarily unlike particles.

6 Experimental Details
Input features. The input to the model is the current particle positions, SDF shape name and parameters, and
transformation parameters (rotation and translation). We also provide a short history of T = 4 previous time-steps,
which is used in Sanchez-Gonzalez et al. [3]. In the ‘encoder’ step, we initialize the node embeddings vi with the
previous velocities and distance to the container (see [3] for details). We compute the SDF and its gradient on only the
current particle positions, applying the inverse rigid-body transformation of the shape to the query points. The initial
edge features eij contain the distance and displacement between vi and vj .

Model Details. We use a graph network architecture with ten message-passing steps (see Sec. 3.2, main paper for
forward pass details). Each message-passing step consists of a node and edge MLP, which are shared across nodes/edges
but not across steps. Finally, an MLP ‘decoder’ is applied to each node to predict accelerations. These accelerations are
obtained via an inverse Euler update given the next positions X(t+1) [3]. Each MLP has two hidden layers with latent
dimensions of 128 and ReLU activations, and a LayerNorm applied to the output. Please see [3] for more details which
we leave mostly unchanged.

Loss and Training Details. We train all our models for 2M steps; we use Adam with a decaying learning rate schedule
from 1e-4 to 1e-6. Noise is added to the input positions as is standard to improve stability over long rollouts [3]. For the
weighting of particles near the surface (Eq. (1), main paper), we use λ = 5, and threshold α = 0.09. This threshold is

7

https://github.com/vsitzmann/siren

based on the classical simulator, which considers particle pi’s ‘neighborhood radius’ of relevant neighboring particles as
6r, where r = 0.015 is the particle radius. Empirically we found that on aggregate no more than ∼ 25% of the particles
are considered near to the surface across a rollout.

6.1 Metrics: Additional details
Chamfer distance is computed per-timestep and averaged across time-steps. For each time-step we have a predicted
point cloud P and ground-truth point cloud G. The Chamfer distance for each timestep is:

CD(P,G) =
1

|P |
∑
x∈P

min
y∈G

||x− y||22 +
1

|G|
∑
y∈G

min
x∈P

||x− y||22.

For the Chamfer Surface metric, at each time-step we consider Pα′ , the set of particles in P that have SDF value
F (p) < α′ in the predicted point cloud. We then measure the Chamfer distance of this ‘near-surface’ point cloud to the
ground-truth point cloud G. Similarly, we compute the Chamfer distance of Gα′ to all of P . The metric is:

CD(P,G) =
∑

x∈Pα′

min
y∈G

||x− y||22 +
∑

y∈Gα′

min
x∈P

||x− y||22

If P diverges significantly from G near the surface, then the average distance between a particle in Pα′ and any
particle in G should be high. By ‘zooming in’ only on near-surface particles, we can understand errors in fluid-surface
interactions more effectively than overall Chamfer distance, which considers the entire rollout and averages out these
errors. Note that in the Chamfer surface metric the distances are summed rather than averaged across particles.

Most of our metrics depend on access to the SDF value f(p) (all except Chamfer distance). For complex scenes, neural
SDFs have reliable zero-crossings but can have errors away from the surface. We convert the neural SDFs to meshes,
and use an mesh → SDF library to obtain an SDF fm which we use for computing metrics. Note that fm is only
approximately differentiable and is not scalable to large scenes (requires expensive mesh computation) compared to fθ.
Neural SDFs are more suitable for fluid prediction in large, complex scenes and also for solving inverse problems.

7 Design

7.1 Implementation Details
Please see the main paper for details on the tasks. Here we provide implementation details.

Bowl task. The reward is the log probability of a Gaussian centered at the bottom of the object, i.e. N((0., 0., h),Σ),
where h is the object height. We use a spherical covariance with σ2 = 0.8. At each iteration the forward model is rolled
out for 50 steps and the reward is measured on the final particle positions. If the filter radius r2 reaches 0 during the
optimization, it is fixed and only r1 is optimized. We optimize for 100 iterations (likewise for the funnel task).

Funnel task. The reward is the log probability of a 2D Gaussian at the bottom of the container, centered at the origin;
that is N((0., 0.),Σ). This incentivizes the design to concentrate fluid onto the ground. We use a spherical covariance
with σ2 = 0.75. At each iteration the forward model is rolled out for 75 steps. Only particles that reaches the bottom of
the container contribute to the reward. Once a particle reaches the ground it is removed from the simulation.

Latent Space Design. We use the bowl reward with σ2 = 0.6, centered according to the unit sphere containing the
chair. The DeepSDF model is a variational auto-decoder, so it learns latent codes zi for each of the training shapes
which are regularized by a Gaussian prior. A key result of [2] is that the resulting latent space is well-structured and
interpolations represent valid shapes; we can thus use gradients to effectively search for a novel design (note that the
bowl-shaped chair in Fig. 10, main paper certainly was not one of the training shapes, but design optimization with
SURFSUP discovers it regardless).

8

Figure 7: This shows the designs in Fig. 8 in the main paper, along with the evolution of the reward and the capture
radius (blue) and filter radius (orange) over the optimization process.

7.2 Further Analysis of Design Solutions
Figure 7 shows further detail of Fig. 9 in the main paper. We additionally show the evolution of the reward and
the design parameters during training. For the bowl, the reward increases throughout the optimization, while for
the funnel it oscillates then converges quickly. For the bowl, we initialize r1 = 0.07 (low capture radius) and
r2 = 0.05 (non-zero filter radius); the final solution is r1 = 0.232 (high capture radius) and r2 = 0.0 (perfect
containing). For the funnel, we initialize r1 = 0.10 (small) and r2 = 0.09 (larger-than-desired); the final solution is
r1 = 0.221 (high capture radius) and r2 = 0.0714 (narrower filter radius). For each of the six frames shown in Figure 7,
we provide videos showing rollouts of exactly the length used to compute reward in our optimization (50 steps for the
bowl, 75 steps for the funnel). See the Design_videos folder. Notably, we also find that the design optimization is
robust to different initializations of r1 and r2 (Fig. 8).

Figure 8: This shows convergence of the bowl optimization for diverse initializations of the capture radius and filter
radius. For all three initializations, the model converges to a sufficiently high capture radius r1 (blue, approximately
0.20 for all initializations) and zero filter radius r2 (orange), which is the optimal solution.

9

References
[1] Jan Bender and Dan Koschier. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM

SIGGRAPH / Eurographics Symposium on Computer Animation, SCA ’15, page 147–155, New York, NY, USA,
2015. Association for Computing Machinery.

[2] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 165–174, 2019.

[3] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia. Learning
to simulate complex physics with graph networks. In International Conference on Machine Learning, pages
8459–8468. PMLR, 2020.

[4] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In Proc. NeurIPS, 2020.

10

	Videos for Rollouts in Paper
	Comparing SurfsUp to the GNS Baseline – further analysis
	Success modes of SurfsUp vs. GNS Baseline – qualitative results
	Quantitative Comparison to GNS on Complex Scenes
	Improving Efficiency of Simulation
	Brief Study: Inference Times

	Rollouts on Other Test Sets
	Ablation Study
	Datasets: Details
	Prim-Shapes Dataset
	Primitives-Unions
	Complex-Scenes, SIREN training
	ShapeNet chairs/bowls, DeepSDF training
	Mountain scene

	Experimental Details
	Metrics: Additional details

	Design
	Implementation Details
	Further Analysis of Design Solutions

