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Abstract

This document supplements our submission entitled
Chordal Averaging on Flag Manifolds and Its Applications.
In particular, we present extended proofs of our proposi-
tions, provide ablation studies and broaden the experimen-
tal evaluations in our main paper. We further include a dis-
cussion on the connection of multiple rotation averaging to
our motion averaging.

1. Flag Representations
A flag is a nested collection of subspaces of increasing

dimension. An illustration of a FL(1, 2; 3) is in Fig. 1).
Flags are a natural representation for time series data as

nested “time subspaces.” Suppose we data at three times:
xt=1,xt=2,xt=3 ∈ Rd. We can group these data based on
their “effect over time” in the sense that time t = 1 stands
alone, t = 1 affects t = 2, and t = 1 and t = 2 affect t = 3.
This grouping gives us the flag of type FL(1, 2, 3 : d):

span{x1} ⊂ span{x1,x2} ⊂ {x1,x2,x3} ⊂ Rd. (1)

Flags can also model some hierarchical data using hierar-
chically nested subspaces. For a nice list of flags in mathe-
matics, see [25].

Recall FL(d + 1) = FL(d1, d2, . . . , dk; dk+1 = d),
we take m1 = 1 and mj = dj − dj−1. There are num-
ber of representations for flag manifolds involving quotients
[25]. We mention the most popular representation in the
manuscript. A number works [20, 21, 25] use

SO(d)

S(O(m1)×O(m2)× · · · ×O(mk+1))
(2)

where S(O(m1)× · · · ×O(mk)) is

{(M1, . . . ,Mk) :

k∏
i=1

det(Mi) = 1}. (3)

Other works [24, 23] represent flag manifolds using the
quotient

St(dk, d)

O(m1)×O(m2)× · · · ×O(mk)
. (4)
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Figure 1: Illustration of a nested sequence of subspaces cor-
responding to a point on the flag manifold.

In this representation, X ∈ St(dk, d) is used to represent
the equivalence class

[[X]] = {XO : Oi ∈ O(mi)} ∈ FL(d+ 1)

where O = diag(Om1
, . . . ,Omk

). We use this Stiefel quo-
tient representation in this manuscript.

Ye et al. prove that FL(d+1) is diffeomorphic to Eqs. 2
and 4 (see Prop. 4 and 12 in [25]). Additionally, Ye et al.
prove that flags are a closed submanifold of

Gr(m1, d)×Gr(m2, d)× · · ·Gr(mk, d). (5)

Our chordal distance on flag manifolds leverages this
product-of-Grassmannians since it is the 2-norm of the
chordal distances between each Gr(m1, d).

2. Proof of Proposition I
Before providing the full proof, let us recall Prop. I:

Proposition 1. The chordal flag-mean of {[[Xi]]}pi=1 ⊂
FL(d+ 1) is

[[µ]] := argmin
[[Y]]∈FL(d+1)

p∑
i=1

αidc([[X
(i)]], [[Y]])2 (6)

and can be phrased into a Stiefel manifold optimization
problem as

[µ] = argmin
Y∈St(dk,d)

k∑
j=1

mj − tr
(
IjY

⊤PjY
)

(7)

where the matrices Ij and Pj are given in Eq. 8 and Eq. 9
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respectively.

(Ij)i,l =

{
1, i = l ∈ {dj−1 + 1, dj−1 + 2, . . . , dj}
0, otherwise

(8)
and define:

Pj =

p∑
i=1

αjX
(i)
j X

(i)
j

⊤
(9)

For example, if we are averaging on FL(1, 3; 4) we have

I1 =

1 0 0
0 0 0
0 0 0

 and I2 =

0 0 0
0 1 0
0 0 1

 .

Proof. We begin by realizing Eq. 6 as an optimization prob-
lem using the definition of chordal distance:

argmin
[[Y]]∈FL(d+1)

p∑
i=1

αi

 k∑
j=1

mj − tr

(
X

(i)
j

⊤
YjY

⊤
j X

(i)
j

) .

Then we move our summations around to simplify our ob-
jective function:

p∑
i=1

αi

 k∑
j=1

mj − tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
=

k∑
j=1

(
p∑

i=1

αi

)
mj −

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
,

=

k∑
j=1

(
p∑

i=1

αi

)
mj −

k∑
j=1

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
.

Since
∑p

i=1 αi is constant with respect to [[Y]], Eq. 6 is
equivalent to

argmin
[[Y]]∈FL(d+1)

k∑
j=1

mj −
k∑

j=1

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
.

Using our definitions for Ij and Pj , we can write the objec-
tive function in terms of Y:

k∑
j=1

mj − tr

(
Y⊤

j

(
p∑

i=1

αiX
(i)
j X

(i)
j

⊤
)
Yj

)
,

=

k∑
j=1

mj − tr
(
Y⊤

j PjYj

)
,

=

k∑
j=1

mj − tr
(
YjY

⊤
j Pj

)
,

=

k∑
j=1

mj − tr
(
YIjY

⊤Pj

)
.

The third equality is true because YjY
⊤
j = YIjY

⊤.
There are two constraints for [[Y]] ∈ FL(d + 1) ac-

cording to our representation for points on the flag mani-
fold. The first constraint is Y⊤

j Yj = I for j = 1, 2, . . . , p.
The second constraint is [Yj ] ∩ [Yi] = ∅ for all i ̸= j.
These constraints are satisfied when Y⊤Y = I, e.g. Y ∈
St(dk, d).

Using trace invariance to cyclic permutations, the
chordal flag mean optimization problem Eq. 6 is equivalent
to the Stiefel optimization problem Eq. 7.

3. Proof of Proposition III
Proposition 2. The chordal flag-median of {[[Xi]]}pi=1 ⊂
FL(d+ 1),

[[η]] = argmin
[[Y]]∈FL(d+1)

p∑
i=1

αidc([[X
(i)]], [[Y]]), (10)

can be phrased with weights

wi([[Y]]) =

k∑
j=1

αi

max{dc([[X(i)]], [[Y]]), ϵ}

as the optimization problem

argmin
[[Y]]∈FL(d+1)

p∑
i=1

k∑
j=1

mj−wi([[Y]])tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)

with ϵ = 0 as long as dc([[X(i)]], [[Y]]) ̸= 0 for all i.

Proof. We can write Eq. 10 using the definition of chordal
distance as

argmin
[[Y]]∈FL(d+1)

p∑
i=1

αi

√√√√ k∑
j=1

mj − tr

(
X

(i)
j

⊤
YjY⊤

j X
(i)
j

)
.

The orthogonality constraints for Y ∈ Rd×dk to repre-
sent a point on FL(d + 1) are: (i) [Yj ] ∩ [Yi] = ∅ for all
i ̸= j and Y⊤

j Yj = I for all j. Let θ([Yi], [Yj ]) denote
the vector of principal angles between [Yi] and [Yj ]. Using
tr(Y⊤

i YjY
⊤
j Yi) = ∥ cos θ([Yi], [Yj ])∥22, we encode our

orthogonality constraints as

tr(Y⊤
i YjY

⊤
j Yi) =

{
0 i ̸= j

dj i = j
.

We will now use

δi,j =

{
1, i = j

0, i ̸= j.

to put these constraints into the Lagrangian.



Let Λ be a symmetric matrix of Lagrange multipliers
corresponding to the orthogonality constraints. Denote the
entry in the ith row and jth column of Λ as λi,j . With the
constraints added to the objective, we define the Lagrangian
in Eq. 11.

L(Y,Λ) =

p∑
i=1

αi

√√√√ k∑
j=1

mj − tr

(
X

(i)
j

⊤
YjY⊤

j X
(i)
j

)

−
k∑

i=j

k∑
j=1

λi,j(mjδi,j − tr(Y⊤
i YjY

⊤
j Yi)).

(11)

The gradient of Eq. 11 w.r.t. Yj and λi,j is

∇Yj
L = −

p∑
i=1

αiX
(i)
j X

(i)
j

⊤
Yj√∑k

j=1 mj − tr

(
X

(i)
j

⊤
YjY⊤

j X
(i)
j

)

+ 2

k∑
i=1
i ̸=j

λi,jYiY
⊤
i Yj + 4λj,jYjY

⊤
j Yj ,

∇λi,j
L = mjδi,j − tr

(
Y⊤

i YjY
⊤
j Yi

)
.

Notice we are not dividing by zero because
dc([[X

(i)]], [[Y]]) ̸= 0 for all i. Now we use ∇Yj
L = 0 and

∇λi,jL = 0 to solve for λj,j .
First we will work with ∇Yj

L = 0.

0 = −
p∑

i=1

αiX
(i)
j X

(i)
j

⊤
Yj

dc([[X(i)]], [[Y]])

+ 2

k∑
i=1
i̸=j

λi,jYiY
⊤
i Yj + 4λj,jYjY

⊤
j Yj ,

= −
p∑

i=1

αiY
⊤
j X

(i)
j X

(i)
j

⊤
Yj

dc([[X(i)]], [[Y]])

+ 2

k∑
i=1
i̸=j

λi,jY
⊤
j YiY

⊤
i Yj + 4λj,jY

⊤
j YjY

⊤
j Yj ,

0 = −
p∑

i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
dc([[X(i)]], [[Y]])

+ 2

k∑
i=1
i̸=j

λi,jtr
(
Y⊤

j YiY
⊤
i Yj

)
+ 4λj,jtr

(
Y⊤

j YjY
⊤
j Yj

)
.

Using ∇λi,jL = 0 simplifies our equation to

4λj,jtr(Y
⊤
j YjY

⊤
j Yj) =

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
dc([[X(i)]], [[Y]])

,

4mjλj,j =

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
dc([[X(i)]], [[Y]])

.

For [[Y]] to minimize Eq. 10, we would want to maximize
mjλj,j for each j. That is to say, we wish to maximize∑k

j=1 mjλj,j :

p∑
i=1

k∑
j=1

αi

dc([[X(i)]], [[Y]])
tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
. (12)

Maximizing Eq. 12 is the same as minimizing

p∑
i=1

k∑
j=1

mj −
αi

dc([[X(i)]], [[Y]])
tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
.

Using the definition of wi([[Y]]), this minimization is

argmin
[[Y]]∈FL(d+1)

p∑
i=1

k∑
j=1

mj−wi([[Y]])tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)

Proposition 3. Fix [[Z]] ∈ FL(d + 1). Then the minimizer
of

p∑
i=1

k∑
j=1

(
mj − wi(Z)tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

))
(13)

over [[Y]] ∈ FL(d+1) is the weighted chordal flag mean of
{[[X(i)]]}pi=1 ∈ FL(d+1) with weights wi(Z). Note: ϵ = 0
as long as dc([[X(i)]], [[Z]]) ̸= 0 for all i.

Proof. By re-arranging the summations in Eq. 13, we see
its minimizer is also

argmin
[[Y]]∈FL(d+1)

k∑
j=1

mj−
k∑

j=1

p∑
i=1

wi(Z)tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
.

We showed that this is the same as the chordal flag-mean
optimization problem with weights wi(Z) in the proof of
Prop. 1.



4. Proof of Proposition VI
Proposition 4. Let [[Y]] ∈ FL(d + 1) and ϵ > 0. Assume
that d([[Y]], [[X(i)]]) > ϵ for i = 1, 2, . . . , p. Denote the flag
median objective function value as f : FL(d+1) → R and
an iteration of our chordal flag-median IRLS algorithm as
T : FL(d+ 1) → FL(d+ 1). Then

f(T ([[Y]])) ≤ f([[Y]]).

Proof. Assuming that d([[Y]], [[X(i)]]) > ϵ for i =
1, 2, . . . , p, we define the function h : FL(d+1)×FL(d+
1) → R as

h([[Z]], [[Y]]) =

p∑
i=1

wi([[Y]])dc([[Z]], [[X
(i)]])2,

wi([[Y]]) =
1

max
{
dc([[Y]], [[X(i)]]), ϵ

}
=

1

dc([[Y]], [[X(i)]])
.

Some algebra reduces h([[Z]], [[Y]]) to

h([[Z]], [[Y]]) =

p∑
i=1

wi([[Y]])dc([[Z]], [[X
(i)]])2,

=

p∑
i=1

dc([[Z]], [[X
(i)]])2

dc([[Y]], [[X(i)]])
.

h([[Z]], [[Y]]) is the weighted flag-mean objective func-
tion (of {[[X(i)]]}i) with weights wi([[Y]]). So minimizing
h([[Z]], [[Y]]) over [[Z]] is an iteration of our IRLS algorithm
to compute the flag-median. In other words,

T ([[Y]]) = argmin
[[Z]]∈FL(d+1)

h([[Z]], [[Y]]). (14)

Using Eq. 14, we have

h(T ([[Y]]), [[Y]]) ≤ h([[Y]], [[Y]]).

By the definition of h

h([[Y]], [[Y]]) =

p∑
i=1

dc([[Y]], [[X(i)]])2

dc([[Y]], [[X(i)]])
,

=

p∑
i=1

dc([[Y]], [[X(i)]]),

= f([[Y]]).

This means, we have

h(T ([[Y]]), [[Y]]) ≤ f([[Y]]). (15)

FL-mean: FL(1,3;d)

GR-mean: Gr(3, d)

Figure 2: Averaging a collection of faces belonging to three
different identities, captured under varying illumination:
center, left and right. Notice that the first dimension of the
flag representations is center illuminated, better represent-
ing the mean compared to Grassmannian.

Now we use the identity from algebra: a2

b ≥ 2a − b for
any a, b ∈ R and b > 0. Let

a = dc([[Z]], [[X
(i)]]) and b = dc([[Y]], [[X(i)]]).

Then

h([[Z]], [[Y]]) ≥ 2

p∑
i=1

dc([[Z]], [[X
(i)]])

−
p∑

i=1

dc([[Y]], [[X(i)]]),

= 2f([[Z]])− f([[Y]]).

Now, take [[Z]] = T ([[Y]]). This gives us

h(T ([[Y]]), [[Y]]) ≥ 2f(T ([[Y]]))− f([[Y]]). (16)

Then, combining Eq. 16 with Eq. 15, we have

2f(T ([[Y]]))− f([[Y]]) ≤ f([[Y]]),

f(T ([[Y]])) ≤ f([[Y]]).

5. Further Experimental Evaluation
5.1. Further Qualitative Results on Faces Dataset

We now show in Fig. 2 further visualizations of Flag and
Grassmann averages of faces.

5.2. Further Qualitative Results on MNIST

We use 20 examples (e.g., points on FL(1, 2; 748)) of 6s
and add 10 examples of 7s. We use the same workflow from
the manuscript to represent the MNIST digits on Gr(2, 748)
and FL(1, 2; 748). We compute the averages on the Grass-
mannian [10, 22] and flag (ours). The reshaped first dimen-
sion of each of these averages is in Fig. 3. The brightness



FL-medianFL-meanGR-mean GR-median

Figure 3: The first dimension of Grassmannian (“GR-”) and
flag (“FL-”) averages of a data set with 20 representations
of 6s and 10 representations of 7s. The bottom red boxes are
the enlarged version of the upper image. Our flag-median is
the least affected by the outlier examples of 7s.

of the bottom left corner of each image is brighter the more
present the 7s digit (outlier class) is in the image. Notice
the bottom left corner of each image, boxed in red, becomes
darker as we move from left to right. So, our averaging on
the flag is more robust to outliers than Grassmannian aver-
aging. In fact, the bottom left corner of the flag-median is
the darkest. Therefore, our flag-median is the least affected
by the outlier examples of 7s.

5.3. LBG Clustering on UFC YouTube

We use a subset of the UCF YouTube Action dataset [19]
to run a similar experiment to what was done by
Mankovich et al. [22]. The dataset contains labeled RGB
video clips of people performing actions. Within each la-
beled action, the videos are grouped into subsets of clips
with common features. We take approximately one exam-
ple from each subset from each class. This results in 23 ex-
amples of basketball shooting, 23 of biking/cycling, 25 of
diving, 25 of golf swinging, 24 of horse back riding, 25 of
soccer juggling, 23 of swinging, 24 of tennis swinging, 24
of trampoline jumping, 24 of volleyball spiking, and 24 of
walking with a dog. We convert these frames to gray scale,
then we use INTER AREA interpolation from the OpenCV
package [6] to resize the frames to have only 450 pixels.
This is, on average, only 1% of the number of pixels in the
original frame. We vectorize and horizontally stack each
video, then use the first 10 columns of Q from the QR de-
composition to realize each video as a point on Gr(10, 450)
and FL(1, 2, . . . , 10; 450).

We run Linde-Buzo-Gray (LBG) clustering on these
videos and report the resulting cluster purities in Fig. 4.
Clustering on the flag manifold with our flag averages (blue
boxes) improves cluster purities over Grassmannian meth-
ods. We also see higher variance in cluster purities for flag
methods. Even though we are only working with approxi-
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Figure 4: LBG cluster purities of YouTube videos with 10
experiments with different numbers of centers, codebook
sizes. The Grassmannian, e.g. “GR-”, boxes are results
from LBG clustering using chordal distance and Grassman-
nian averages from [10, 22]. The “FL-” boxes are results
from using the flag chordal distance and our flag-mean and
-median.

mately 1% of the total number of pixels in each frame, we
are able to produce cluster purities that are competitive with
those reported in [22] using a similar set of videos. Specifi-
cally, our flag-LBG clustering is well within 0.1 of the high-
est cluster purities reported in [22]. Overall, our flag meth-
ods improve cluster purities in a head-to-head experiment
while remaining competitive with Grassmannian LBG with
only using approximately 1% of pixels per frame.

5.4. Ablation Studies

Robustness to initialization. For Fig. 5, we fix a single-
cluster dataset of 100 points on FL(1, 2, 3; 10) then run our
IRLS algorithm for the flag-median and Stiefel RTR [1, 5]
for the flag-mean with initial points that are further and fur-
ther away from the center of the dataset. Our dataset is com-
puted the same way we compute synthetic datasets for the
manuscript: compute a center, [[C]] ∈ FL(1, 2, 3; 10), and
then add noise to the center using the parameter δ. For this
experiment we use δ = .2. Our initial point for our IRLS
algorithm and RTR is computed as the first 3 columns of the
QR decomposition of C+Zδinit where Z ∈ R10×3 has en-
tries sampled from U [−.5, .5). We call δinit the noise added
to the initial point and plot it on the x-axis of Fig. 5. The
“Error” is the chordal distance on FL(1, 2, 3; 10) between
the center and the algorithm output. “Iterations” is the num-
ber of iterations of RTR for the flag-mean and IRLS for the
flag-median until convergence. “Cost” is the objective func-
tion values of the algorithm output. Our IRLS algorithm
estimates the flag-median is further away from the center,
[[C]] than the flag-mean estimate. Also, the number of itera-
tions of Stiefel RTR increases as we move the center further
away from our dataset whereas our IRLS algorithm num-
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Figure 5: A plot of the robustness of our IRLS algorithm
for the flag-median and Stiefel RTR for the flag-mean to
initialization. For the median, we report the IRLS-iterations
whereas for the mean, we report the RTR-iterations. Note
that, even in large noise variances, both of the algorithms
converge to a reasonable point regardless of initialization.

ber of iterations remains constant. Finally, the cost value
for the flag-median estimate is higher than the flag-mean
estimate because the flag-mean estimate objective function
likely contains squares of values less than 1.
Computation time.

We conducted the further experiments with ambient di-
mension and “dimension gap” and plot the runtime of Alg.
1 (Fl-Mean) and Alg. 2 (Fl-Median) in Fig. 6. As shown,
the runtime increases linearly with dimension and decreases
linearly with dimension gap. The FL-Mean is less affected
than the FL-Median when changing d or d− k. For high d,
the runtime for the FL-Median is unstable with high stan-
dard deviation and high changes in the mean runtime across
small changes in d. In contrast, the FL-Mean is relatively
stable in run-time to increasing d. When we vary dimen-
sion gap (d − k), there is a negligible standard deviation in
runtime for the FL-Mean and FL-Median. The FL-Median
algorithm is very slow for low d − k and as fast as the FL-
Mean for high d − k. The FL-Mean algorithm runtime
is more stable to changes in dimension gap than the FL-
Median.

5.5. Motion Averaging

On error metrics. We score the quality of our averages
using the geodesic distance on the pose manifold SE(3)
(or equivalently the geodesic distance on dual quaternions):

ϵ(T1,T2) =
1

π
∥ log(R1

⊤R2)∥2 + λT ∥t1 − t1∥2 (17)

where (Ri, ti) are extracted from Ti as rotational and trans-
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Figure 6: Time to compute the chordal flag-mean and -
median of 10 points over 20 random trials. The shaded re-
gion is the standard deviation. We vary d in FL(1, 2; d)
(left) and vary d− k in FL(1, k; d = 50) (right).

lational components, respectively. λT is a scene dependent
strictly positive scaling factor. Note that, as discussed in the
paper, this is very much related to the λ used in motion con-
traction. log(·) : SO(3) → so(3) denotes the logarithmic
map of the SO(3)-manifold. As such, this residual defined
in Fig. 17 is equivalent to:

ϵ(T1,T2) =
1

π
arccos

(
tr
R⊤

1 R2 − 1

2

)
+ λs∥t1 − t2∥2.

Single rotation averaging. Single rotation averaging
where a set of rotation matrices are averaged, is a special
case of motion averaging where the translational compo-
nents are set to zero. Due to the compactness of the man-
ifold, additional SO(3)-specific averaging algorithms can
be employed for the case of pure rotations. To compare our
method against a larger class of well established, rotation-
specific averaging algorithms we opt for zeroing the transla-
tional components, performing averages and reporting only
the angular errors. Figs. 7,8 present our results with increas-
ing noise and increasing outliers respectively. For the case
of outliers, we further include the recent robust methods of
Rie & Civera [17]. Naive refers to the Euclidean averages
of rotation matrices (with a subsequent projection).
Impact of λ. As we have discussed in the paper, the scene-
dependent scaling λ is a hyper-parameter in our SE(3)-
averaging. Note that, other distance metrics such as the
ones dependent on 3D point distances exist [7]. These met-
rics exploit the action of 3D transformations on an aux-
iliary point set to measure distances in the 3D configu-
ration of points. However, even those are somehow de-
pendent upon a hyper-parameter such as the diameter of
the point set or the point configurations. This is why we
evaluate the impact of λ in our averaging. In particular,
we design multiple experiments to average 250 random
points on SE(3) generated with an angular noise level of
0.075. The radius of this scene is set to 1, up to a trans-
lational noise level of 0.15. This also means that the op-
timal λ⋆ (unknown during test) is 1. We then vary λ ∈
[0.002, 0.025, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.8, 2, 2.25,
2.5] and average 250 random points, over 50 runs. In each
run, the point sets differ randomly. We compute the errors
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Figure 7: Single rotation averaging results for increasing
levels of axial noise on synthetic, outlier-free data.
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Figure 8: Single rotation averaging results for increasing
levels of outliers on synthetic data with < 5◦ of noise.

using Eq. 18 with λ = 1 and accumulate them over all runs.
Fig. 9 plots the average errors per each λ. In this outlier-free
regime, our flag-mean and flag-median are almost aligned
when λ = 1. Flag-median shows slight advantage over the
mean for smaller values of λ.

6. On Motion & Rotation Averaging
Motion averaging lies at the heart of structure from mo-

tion and 3D reconstruction in multi-view settings. Typ-
ically, the problem of recovering individual motions for
a set of cameras when we are given a number of rela-
tive motion estimates between camera pairs is known as
multiple motion averaging or transformation / motion syn-
chronization [16, 2, 4, 9, 11, 8, 12, 13]. This problem
is foundational for 3D structure recovery. Synchroniza-
tion algorithms usually solve multiple single averaging sub-
problems robustly [3, 18, 14], hence the name multiple mo-
tion averaging. These sub-problems involving the computa-
tion of a robust-barycenter of a set of points on SE(3), are
commonly known as robust single motion averaging and
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0.3

0.4
FL-mean
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Figure 9: Impact of λ our flag-mean and flag-median. Dur-
ing data generation we use λ⋆ = 1, whereas our algorithms
use varying λ as plotted in the x-axis. We then compare the
resulting averages to the ground truth average and report the
deviation. This is an outlier-free regime and as expected,
median & mean prototypes overlap when we are at the opti-
mal value, λ = 1. Though, we also see that our algorithms
are not too sensitive to the exact choice of this parameter.

is the focus of our paper. Although our method directly
operates on the product manifold, it is a de-facto standard
to decompose the problem into single translation averag-
ing and single rotation averaging. The lattter is particularly
well studied due to the interesting mathematical structure
of the problem [15, 14, 17, 13]. Nevertheless, our method
is general enough to solve all of these variants, as we have
experimented with in Figs. 7,8.
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