
Multimodal Variational Auto-encoder based Audio-Visual Segmentation
–Supplementary Materials –

Yuxin Mao1 Jing Zhang2 Mochu Xiang1 Yiran Zhong3 Yuchao Dai1†

1Northwestern Polytechnical University & Shaanxi Key Laboratory of Information Acquisition and Processing
2Australian National University 3Shanghai AI Laboratory

� https://github.com/OpenNLPLab/MMVAE-AVS � https://npucvr.github.io/MMVAE-AVS

Abstract

In this supplementary material, we provide the deriva-
tion process of the Conditional multimodal VAE and the
Latent Space Factorization. Afterward, we describe the de-
tails of the model implemented in the ablation experiments
and give a structural diagram. Finally, we show the de-
tailed structure of the three latent encoders to facilitate un-
derstanding.

1. Conditional Multimodal VAE
We describe in detail the derivation process of Condi-

tional multimodal VAE [6–9, 11, 13–15] in this section.

1.1. Conditional VAE

For a conditional latent variable model with three vari-
ables x (the conditional variable), y (the output) and z (the
latent variable), the generative process is as follows:

• Given input x, the latent variable z is drawn from the
prior distribution pθ(z|x).

• The output is generated via pθ(y|x, z).

The inference process is then to infer informative values of
the latent variable given the observed data by computing the
posterior pθ(z|x, y), which is defined as:

pθ(z|x, y) =
p(x, y, z)

p(x, y)
, (1)

where p(x, y) =
∫
p(x, y|z)p(z)dz, which involves inte-

gral over all configurations of latent variables z, leading to
intractable computation.
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To achieve computationally tractable learning, [7, 11]
introduces a recognition model (or the inference model)
qϕ(z|x, y) as an approximation of the intractable true pos-
terior pθ(z|x, y). The goal is then finding the variational
parameters ϕ that minimize the Kullback–Leibler (KL) di-
vergence between the variational posterior qϕ(z|x, y) and
the true posterior pθ(z|x, y) via:

ϕ∗ = argmin
ϕ

DKL(qϕ(z|x, y)∥pθ(z|x, y)), (2)

where the KL-divergence term in Eq. 2 can be decomposed:

DKL(qϕ(z|x, y)∥pθ(z|x, y))
= Eqϕ(z|x,y) log qϕ(z|x, y)− Eqϕ(z|x,y) log pθ(z|x, y)

= Eqϕ(z|x,y) log qϕ(z|x, y)− Eqϕ(z|x,y) log
pθ(x, y, z)

pθ(x, y)
.

(3)
Based on Bayes’ rule, we have:

pθ(x, y, z) = pθ(y|x, z)pθ(z|x)p(x). (4)

We can then decompose the second expectation term in
Eq. 3 as:

Eqϕ(z|x,y) log
pθ(x, y, z)

pθ(x, y)

= Eqϕ(z|x,y) log
pθ(y|x, z)pθ(z|x)pθ(x)

pθ(x, y)

= Eqϕ(z|x,y) log pθ(y|x, z) + Eqϕ(z|x,y) log pθ(z|x)

+ Eqϕ(z|x,y) log
pθ(x)

pθ(x, y)

= Eqϕ(z|x,y) log pθ(y|x, z) + Eqϕ(z|x,y) log pθ(z|x)

+ Eqϕ(z|x,y) log
pθ(x)

pθ(y|x)pθ(x)
= Eqϕ(z|x,y) log pθ(y|x, z) + Eqϕ(z|x,y) log pθ(z|x)
− log pθ(y|x).

(5)
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We take Eq. 5 back to Eq. 3 and obtain:

DKL(qϕ(z|x, y)∥pθ(z|x, y))
= Eqϕ(z|x,y) log qϕ(z|x, y)− Eqϕ(z|x,y) log pθ(z|x)
− Eqϕ(z|x,y) log pθ(y|x, z) + log pθ(y|x)
= DKL(qϕ(z|x, y)∥pθ(z|x))− Eqϕ(z|x,y) log pθ(y|x, z)︸ ︷︷ ︸

-ELBO(x,y,θ,ϕ)

+ log pθ(y|x).
(6)

We simplify Eq. 6, and obtain:

log pθ(y|x)
= ELBO(x, y, θ, ϕ) +DKL(qϕ(z|x, y)∥pθ(z|x, y)).

(7)

By Jensen’s inequality, DKL(qϕ(z|x, y)∥pθ(z|x, y)) in Eq. 7
is always greater or equal to zero. In this case, minimizing
it can be achieved by maximizing ELBO(x, y, θ, ϕ), which
is the evidence lower bound (ELBO). With the reparame-
terization trick [7], the KL-divergence term in Eq. 7 can be
solved in the closed form given that both the prior and pos-
terior are Gaussian.

Following the maximum likelihood training pipeline,
a conditional VAE (CVAE) is then trained to maximize
the conditional log-likelihood of individual data points
log pθ(y|x) via:

θ∗, ϕ∗ = argmax
θ,ϕ

log pθ(y|x)

= argmax
θ,ϕ

ELBO(x, y, θ, ϕ).
(8)

1.2. Conditional Multimodal VAE

The unimodal variational auto-encoders (VAEs) [7, 11]
are optimized by maximizing the evidence lower bound
(ELBO), which includes a reconstruction term and the
Kullback-Leibler (KL) divergence term to measure the di-
vergence from the variational posterior to the prior distri-
bution of the latent variable. With the reparameterization
trick [7], KL-Divergence within the unimodal VAEs can be
solved in closed form.

In our multimodal setting [12, 15], we obtain the same
derivation as in Eq. 7, except that we change the uni-
modal data x to the multimodal data X = {{xv

t }Tt=1, x
a},

i.e. the visual {xv
t }Tt=1 for T non-overlapping yet contin-

uous frames, audio xa of the current clip. The ELBO of
conditional multimodal VAE is then obtained as:

ELBO(X, y, θ, ϕ)

= DKL(qϕ(z|X, y)∥pθ(z|X))− Eqϕ(z|X,y) log pθ(y|X, z),
(9)

where qϕ(z|X, y) and pθ(z|X) represent the joint posterior
and prior respectively. Product of experts (POE) [3, 5] is
widely studied for estimation of the joint prior/posterior dis-
tributions. Specifically, for input multimodal data X and

latent variable z, [15] obtains joint prior pθ(z|X) and pos-
terior pθ(z|X, y) via product of Gaussian experts across the
modalities. In this case, the KL divergence within ELBO is
computed between two Gaussian distributions, leading to a
closed form solution.

One main disadvantage of PoE based latent space fac-
torization is that one miscalibrated expert will dominate the
prediction, which can be detrimental to the whole model.
Alternatively, Mixture of Expert (MoE) [10] is introduced
to factorize the joint prior/posterior distribution as a com-
bination of unimodal priors/posteriors, facilitates the opti-
mization of individual expert. However, MoE [10] is com-
putationally less efficient as the joint prior and posterior
are not Gaussian anymore, thus the KL-Divergence within
ELBO cannot be solved in closed form. Although impor-
tance sampling [2] is adopted to achieve tight ELBO, com-
putational efficiency is reduced. The Jensen-Shannon (JS)
divergence [12] based multimodal VAE in this paper is to
achieve a trade-off between computational efficiency and
prediction quality.

2. Latent Space Factorization
Conventionally, the objective of the JS divergence based

conditional multimodal VAE is defined as:

L(X, y, θ, ϕ)

= Eqϕ(z|X,y) [log pθ(y|X, z)]− JSD(qϕ(z|X, y), pθ(z|X)),
(10)

which is maximized to obtain parameter estimation. As dis-
cussed in the manuscript, the audio data provides category
information for the localization of the object in the video,
whereas the visual data provides an object pool with pre-
cise structure information. In this case, we claim the shared
information of both modalities can be reliable in localizing
the target object(s). The latent space factorization is then
used to factorize the latent code of each modality, achieving
both shared representation learning c and modality-specific
(s) representation learning.

The posterior latent code of each modal is then de-
fined as q(z) = q(s, c) = qϕs

(s|x, y)qϕc
(c|x, y) follow-

ing [1]. Similarly, the prior latent code is obtained as:
p(s, c) = pθ(s|x)pθ(c|x), where we use x here to repre-
sent one modality of data. Based on this, the reconstruction
part in Eq. 14 can be obtained as:

Eqϕ(z|X,y) [log pθ(y|X, z)]

=

K∑
k=1

Eqϕc (c|X,y)

[
γEqϕ

sk
(sk|xk,y)

[
log pθ(y|xk, sk, c)

]]
,

(11)
which is exactly the reconstruction part in Eq. (5) of the
manuscript.

For our multimodal setting, the shared representation (c)
models the multimodal representation, while the modality-
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Figure 1. Overview of the model without the latent space factorization
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Figure 2. The detail structure of the three latent encoders ϕsv , ϕc, ϕsa .

specific representation (s) is unrelated to the multimodal
representation. In this case, the KL divergence in Eq. 9 can
be derived as:

DKL(qϕ(z|X, y)∥pθ(z|X))

= DKL(qϕ(s, c|X, y)∥pθ(s, c|X))

= DKL(qϕs
(s|X, y)∥pθ(s|X)) +DKL(qϕc

(c|X, y)∥pf (c|X)),
(12)

where pf (c|X) is the dynamic prior, which can be the
geometric mean of the unimodal shared representations,
or the pθ(c|X) in Eq. (5) of the manuscript. Thus,
DKL(qϕc(c|X, y)∥pf (c|X)) computes the KL divergence
of qϕc

(c|X, y) from the geometric mean of the prior, which
can be rewritten as JS divergence:

DKL(qϕc(c|X, y)∥pf (c|X)) = JSD(qϕc(c|X, y), pθ(c|X)),
(13)

which is exactly the JSD term in Eq. (5) of the manuscript.

Let’s take Eq. 11 and Eq. 12 back to Eq. 9, we obtain the
objective of the JS divergence based multimodal VAE with

latent space factorization as:

ÊLBO(X, y, θ, ϕ)

=

K∑
k=1

Eqϕc (c|X,y)

[
γEqϕ

sk
(sk|xk,y)

[
log pθ(y|xk, sk, c)

]]
− β

K∑
k=1

DKL(qϕ
sk
(sk|xk, y)||pθ(sk|xk))

− βJSD(qϕc(c|X, y), pθ(c|X)),
(14)

where hyper-parameters γ and β are used to achieve stable
training as in [4].

3. More details of Ablation Studies

We have performed an ablation study of the effective-
ness of the latent space factorization in the manuscript by
training a model without the latent space factorization. We
implement a model with one joint latent code to model the
joint distribution of audio and visual. For a better compar-
ison with our proposed model, we show a detailed diagram
of the model structure without the latent space factoriza-



tion in Fig. 1. And results shown in Table 2 (b)-(c) in the
manuscript demonstrate the effectiveness of the latent space
factorization.

4. Detail structure of the latent encoders
We describe in detail the structure of the three latent en-

coders ϕsv , ϕsa , ϕc to facilitate understanding, as shown in
Fig. 2.
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