Supplemental Materials Inter-Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification

A. Additional Hyperparamter Influences

Figure 1. Segmentation AUROC, Image AUROC, InReaCh Precision, and InReaCh Recall vs. Feature Hierarchy depth. We also include PatchCore's feature hierarchy selection at the value of PC [9]. Testing is done with 10 corruptions in the dataset for each class.

Feature Hierarchy Depth: We evaluated feature hierarchy depths of Wide-ResNet-50 by considering the outputs of only the first 13 residual blocks, as higher depths increased training time [13], including the shallowest features cumulatively reduced bias toward the pre-training dataset (ImageNet [5]). Our search showed that, with diminishing returns, including additional feature hierarchies, performed better. We also evaluated our method using the deeper feature hierarchies of Patch-Core and noted greater per-image performance but decreased localization performance, InReaCh precision, and recall [9]. In general, deeper feature hierarchies reduced the recall of InReaCh, with little relative effect on the precision. The significant decrease in precision and recall of InReaCh, in conjunction with the increased expected bias towards ImageNet classes of these deeper features, validates the selections of lower-level feature hierarchies.

B. Full Image-Wise Detection Results

InReaCh solves multiple classes fully with 1.0 AUROC, such as Bottle and Leather, with full results in Table 1. Notably, the toothbrush class, which has the smallest dataset of only 60 training images, significantly improves from 0.642 image-wise AUROC with no data corruptions to 0.961 AUROC with 40 dataset corruptions. This improvement appears to come from the increase of training data by 67% by introducing the corrupt samples. Notably, performance for the screw class is much lower than all other classes for image-wise AUROC but similar for pixel-wise. In investigating the scoring, it was observed that the screw head slot was being scored highly as an anomaly in all images, nominal or not, but this was a very small region in the overall image. This seems to be because the screw is randomly rotated around its length, making the view of the screw head slot very heterogeneous. Because of this, these patches were filtered InReaCh and, therefore, never incorporated into the nominal model. We expect this issue will be resolved by incorporating more data to allow this to be better represented by the dataset, similar to the behaviour noted in the toothbrush class, or by tuning the σ and span filter values for this specific class.

Corrupt Images*	0	0	0	0	0	0	10	40
$\fbox{Class}{\downarrow} \texttt{Method} \rightarrow $	SPADE	Cut-Paste	PatchSVDD	PaDiM	PatchCore	InReaCh	InReaCh	InReaCh
	[2]	[6]	[12]	[3]	[9]			
Bottle	-	0.992	0.986	-	1.000	0.998	1.000	1.000
Cable	-	0.871	0.903	-	0.995	0.922	0.939	0.922
Capsule	-	0.879	0.767	-	0.981	0.865	0.835	0.822
Carpet	-	0.679	0.929	-	0.987	0.992	0.995	0.992
Grid	-	0.999	0.946	-	0.982	0.954	0.971	0.963
Hazelnut	-	0.913	0.920	-	1.000	0.996	0.988	0.990
Leather	-	0.997	0.909	-	1.000	1.000	1.000	1.000
Metal Nut	-	0.968	0.940	-	1.000	0.948	0.942	0.911
Pill	-	0.934	0.861	-	0.966	0.827	0.844	0.807
Screw	-	0.544	0.813	-	0.981	0.610	0.634	0.621
Tile	-	0.959	0.978	-	0.987	0.989	0.986	0.990
Toothbrush	-	0.948	1.000	-	1.000	0.642	0.917	0.961
Transistor	-	0.964	0.915	-	1.000	0.882	0.871	0.865
Wood	-	0.949	0.965	-	0.992	0.942	0.959	0.918
Zipper	-	0.994	0.979	-	0.994	0.975	0.970	0.951
Average	0.855	0.909	0.921	0.953	0.991	0.903	0.923	0.914
Supervision*	OCC	OCC	OCC	OCC	OCC	None	None	None

Table 1. MvTec AD Anomaly Detection performance in image-wise AUROC [1]. *Supervision is given as OCC (one-class classification) or None (Unsupervised). *Corrupt Images are the number of anomalous images randomly added to the training set from the test set to show the unsupervised filtering abilities of InReaCh.

C. Alternative Anomaly Scoring Methods

		Ablation	Results		Proposed InReaCh	Alternative Anon	naly Scoring
$\textbf{Class}{\downarrow} \textbf{Configuration}^{*} \rightarrow$	Base InReaCh	Local Agg.	Span Filte	σ Filter	Pos. Embedding	Mahalanobis [7, 3]	PatchCore [9]
Bottle	0.977	0.977	0.977	0.981	0.981	0.636	0.981
Cable	0.905	0.905	0.905	0.934	0.962	0.615	0.961
Capsule	0.977	0.977	0.977	0.981	0.977	0.270	0.976
Carpet	0.992	0.992	0.992	0.993	0.993	0.252	0.993
Grid	0.984	0.984	0.984	0.982	0.982	0.883	0.981
Hazelnut	0.972	0.972	0.972	0.973	0.973	0.613	0.972
Leather	0.992	0.992	0.992	0.992	0.992	0.231	0.992
Metal Nut	0.969	0.969	0.969	0.977	0.977	0.544	0.976
Pill	0.908	0.908	0.908	0.942	0.937	0.430	0.935
Screw	0.958	0.958	0.958	0.959	0.957	0.552	0.955
Tile	0.953	0.953	0.953	0.960	0.960	0.396	0.959
Toothbrush	0.974	0.974	0.974	0.986	0.984	0.651	0.983
Transistor	0.898	0.898	0.898	0.902	0.947	0.787	0.946
Wood	0.923	0.923	0.923	0.933	0.933	0.575	0.931
Zipper	0.930	0.930	0.930	0.971	0.960	0.607	0.959
Average	0.954	0.954	0.954	0.964	0.968	0.536	0.967

Table 2. InReach ablation and alternative anomaly scoring function results on MvTec AD Anomaly Segmentation task in pixel-wise AUROC [1]. All testing was done with 10 corruptions in each class's training set. The nearly identical results between the first three configurations are correct. *The configuration for the ablation results is cumulative from left to right.

Along with our naive proposed minimal distance scoring method for anomaly detection, we also evaluate the use of the Mahalanobis distance [7] as used in [3] and the anomaly scoring method in PatchCore [9]. We note extremely poor performance in using the Mahalanobis distance. This is caused by the poor values generated for the standard deviations used. We used the calculated standard deviation of the specific patch's channel for the Mahalanobis calculation, but since these channels often contain less than 10 patches, the standard deviation can vary wildly. We see very similar, if slightly lower, performance using PatchCore's scoring method to our proposed method. The increased complexity of PatchCore, finding multiple nearest neighbours and calculating exponentials, is not justified by the performance.

Class	Bottle	Cable	Capsule	Carpet	Grid	Haz.	Leather	M. Nut	Pill	Screw	Tile	Tooth.	Trans.	Wood	Zipper
Transpose Test	123	1030	7840	8	12	71	96	82	5064	26	78	5916	1096	6	6990

Table 3. InReaCh transpose test scores for each data class for determining if positions are consistent across images in the training data and if positional embedding should be incorporated.

D. Additional Positional Embedding Details

Each class in the MVTec AD Dataset is clearly separated in two groups based on the transpose test, a group where the transpose test values are less than 150 and those above 1000. The group above 1000 all are classes that have positional structure and could benefit from positional embedding, and the opposite for the classes with scores below 150. Notably, some object classes are in the group with low transpose test scores. This is because of the random positioning of the object in the frame, such as for hazelnut and screw. From the clear separation of these classes, we set the threshold at a reasonable 600 for the transpose test, determining if each class should utilize positional embeddings or not. Overall positional embedding does not make a significant impact on our final overall. When testing classes that fail the positional embedding transpose test, we rotate each image by 1-degree increments and compare the center quarter of the image to the first image in the dataset choosing the rotation angle associated with the smallest L2 distance. Once all images are aligned to the first image in the dataset, we re-run the transpose test to determine if a rotation only disrupts positional embeddings are appended to the patch features. Otherwise, they are returned to their original state and processed without positional embeddings.

E. Implementation Details

We implemented InReaCh in Python 3.8 [10]. We did our distance calculations and feature extraction using PyTorch [8]. Following previous methods for direct comparison [9, 2, 4], we use the official Pytorch torchvision WideResNet50 weights. We use Scipy's Gaussian filter to smooth our pixel-wise predictions with a standard deviation of 5, and we did not tune this parameter [11].

References

- [1] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad-a comprehensive real-world dataset for unsupervised anomaly detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9592–9600, 2019.
- [2] Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep pyramid correspondences. CoRR, abs/2005.02357, 2020.
- [3] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distribution modeling framework for anomaly detection and localization. In *Pattern Recognition. January* 10–15, 2021, pages 475–489. Springer, 2021.
- [4] David Dehaene, Oriel Frigo, Sébastien Combrexelle, and Pierre Eline. Iterative energy-based projection on a normal data manifold for anomaly localization. *arXiv preprint arXiv:2002.03734*, 2020.
- [5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
- [6] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9664–9674, 2021.
- [7] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. *Proceedings of the National Institute of Sciences (Calcutta)*, 2:49–55, 1936.
- [8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.
- [9] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. Towards total recall in industrial anomaly detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14318–14328, 2022.
- [10] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995.
- [11] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature Methods*, 17:261–272, 2020.
- [12] Jihun Yi and Sungroh Yoon. Patch svdd: Patch-level svdd for anomaly detection and segmentation. In *Proceedings of the Asian Conference on Computer Vision*, 2020.
- [13] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference 2016. British Machine Vision Association, 2016.

Bottle	Cable	Capsule	Carpet	Grid
good/018.png	good/032.png	crack/007.png	color/006.png	good/013.png
contamination/010.png	combined/010.png	squeeze/000.png	color/012.png	metal_contamination/003.png
broken_large/009.png	missing_cable/000.png	squeeze/006.png	cut/001.png	bent/009.png
broken_small/010.png	missing_wire/009.png	good/010.png	cut/015.png	metal_contamination/006.png
broken_large/003.png	good/027.png	crack/021.png	metal_contamination/007.png	metal_contamination/000.png
good/014.png	good/002.png	good/003.png	hole/000.png	good/015.png
good/016.png	bent_wire/002.png	squeeze/007.png	hole/002.png	metal_contamination/007.png
broken_large/014.png	missing_cable/011.png	scratch/008.png	thread/013.png	bent/005.png
good/011.png	cable_swap/003.png	faulty_imprint/015.png	thread/001.png	good/019.png
broken_small/007.png	missing_cable/008.png	good/007.png	good/012.png	good/006.png
contamination/018.png	good/041.png	good/014.png	cut/013.png	thread/001.png
good/003.png	good/024.png	faulty_imprint/004.png	metal_contamination/004.png	broken/007.png
broken_large/002.png	combined/000.png	scratch/021.png	metal_contamination/015.png	good/012.png
contamination/011.png	good/057.png	scratch/011.png	hole/010.png	good/002.png
good/002.png	cut_outer_insulation/008.png	squeeze/003.png	cut/007.png	good/004.png
good/010.png	cut_outer_insulation/005.png	poke/012.png	good/022.png	glue/010.png
broken_large/016.png	good/047.png	squeeze/009.png	color/009.png	broken/001.png
broken_large/017.png	cable_swap/005.png	poke/018.png	cut/012.png	thread/002.png
broken_small/001.png	good/033.png	faulty_imprint/016.png	color/014.png	good/020.png
good/001.png	bent_wire/007.png	poke/006.png	cut/008.png	good/018.png
contamination/014.png	good/051.png	scratch/001.png	metal_contamination/001.png	broken/006.png
good/019.png	bent_wire/000.png	crack/009.png	hole/015.png	broken/003.png
good/005.png	cut_inner_insulation/013.png	squeeze/013.png	thread/009.png	glue/002.png
contamination/016.png	good/054.png	faulty_imprint/005.png	color/003.png	good/003.png
broken_small/006.png	combined/008.png	scratch/014.png	color/005.png	bent/006.png
broken_small/003.png	missing_wire/007.png	faulty_imprint/008.png	metal_contamination/008.png	metal_contamination/010.png
broken_small/014.png	cable_swap/000.png	faulty_imprint/006.png	metal_contamination/011.png	glue/000.png
broken_large/018.png	good/009.png	crack/014.png	good/002.png	broken/010.png
contamination/015.png	poke_insulation/007.png	scratch/015.png	color/001.png	good/005.png
contamination/008.png	good/030.png	poke/019.png	good/015.png	metal_contamination/008.png
broken_small/012.png	good/029.png	scratch/010.png	thread/014.png	bent/008.png
contamination/020.png	good/021.png	crack/012.png	hole/009.png	good/011.png
good/012.png	good/001.png	squeeze/016.png	good/020.png	thread/003.png
broken_large/000.png	cut_inner_insulation/007.png	squeeze/015.png	good/009.png	good/008.png
good/008.png	good/012.png	squeeze/018.png	metal_contamination/010.png	thread/004.png
broken_large/004.png	missing_wire/000.png	scratch/005.png	metal_contamination/002.png	thread/010.png
broken_large/015.png	good/050.png	good/004.png	thread/018.png	good/001.png
broken_large/005.png	good/005.png	crack/001.png	metal_contamination/013.png	metal_contamination/009.png
broken_large/011.png	good/055.png	faulty_imprint/002.png	good/025.png	good/016.png
broken large/013 nng	good/048 nng	crack/003 nng	good/006 png	metal contamination/005 png

broken_large/013.pnggood/048.pngcrack/003.pnggood/006.pngmetal_contamination/005.pngTable 4. InReaCh training data corruptions for 40 corruptions splits for the MVTec AD Dataset. For 10 corruption splits, only the first 10test image labels are incorporated into the training set.

Hazelnut	Leather	Metal Nut	Pill	Screw
crack/012.png	fold/007.png	color/006.png	color/018.png	manipulated_front/011.png
good/026.png	glue/013.png	color/012.png	pill_type/006.png	manipulated_front/010.png
crack/006.png	good/020.png	scratch/022.png	crack/022.png	thread_side/005.png
good/032.png	poke/009.png	good/013.png	scratch/001.png	thread_side/018.png
print/016.png	poke/016.png	bent/000.png	good/006.png	manipulated_front/014.png
print/004.png	color/012.png	bent/010.png	crack/023.png	thread_top/019.png
hole/002.png	poke/014.png	bent/012.png	pill_type/005.png	manipulated_front/020.png
good/002.png	cut/014.png	flip/010.png	crack/021.png	good/035.png
hole/000.png	good/018.png	color/020.png	good/020.png	good/037.png
cut/002.png	glue/009.png	scratch/005.png	good/002.png	scratch_neck/001.png
good/010.png	glue/002.png	good/011.png	contamination/013.png	scratch_neck/013.png
crack/009.png	cut/010.png	good/019.png	crack/025.png	thread_top/020.png
cut/000.png	glue/018.png	bent/008.png	color/002.png	thread_top/014.png
good/027.png	poke/003.png	bent/020.png	crack/007.png	manipulated_front/016.png
good/029.png	cut/004.png	good/005.png	crack/013.png	manipulated_front/019.png
cut/009.png	good/002.png	scratch/015.png	contamination/015.png	good/002.png
crack/014.png	glue/014.png	color/009.png	crack/012.png	manipulated_front/004.png
hole/016.png	good/006.png	good/010.png	pill_type/000.png	scratch_head/019.png
hole/004.png	fold/014.png	color/014.png	scratch/015.png	scratch_head/011.png
cut/005.png	glue/005.png	good/006.png	color/014.png	thread_side/019.png
cut/012.png	poke/002.png	good/016.png	crack/014.png	thread_side/006.png
crack/003.png	color/006.png	bent/023.png	good/009.png	thread_side/016.png
crack/005.png	color/005.png	flip/006.png	combined/000.png	thread_side/013.png
good/022.png	color/009.png	color/003.png	color/011.png	scratch_neck/004.png
crack/001.png	cut/002.png	color/005.png	combined/008.png	good/014.png
good/015.png	color/014.png	bent/001.png	contamination/007.png	scratch_neck/009.png
good/038.png	fold/010.png	bent/004.png	faulty_imprint/004.png	manipulated_front/021.png
print/000.png	fold/000.png	flip/018.png	contamination/000.png	good/034.png
cut/016.png	good/022.png	color/001.png	good/008.png	scratch_head/014.png
good/009.png	color/001.png	scratch/008.png	color/017.png	thread_top/013.png
good/014.png	color/003.png	flip/011.png	color/023.png	good/026.png
cut/013.png	cut/015.png	bent/019.png	combined/004.png	manipulated_front/022.png
hole/015.png	glue/001.png	scratch/013.png	crack/009.png	thread_top/008.png
hole/013.png	good/015.png	scratch/002.png	scratch/021.png	good/031.png
hole/005.png	glue/011.png	bent/003.png	good/024.png	thread_side/011.png
hole/006.png	fold/013.png	good/017.png	combined/003.png	scratch_head/006.png
good/019.png	fold/008.png	flip/015.png	good/022.png	thread_top/010.png
print/011.png	fold/009.png	bent/006.png	color/019.png	manipulated_front/008.png
good/007.png	fold/001.png	scratch/018.png	faulty_imprint/003.png	good/015.png
good/031.png	good/029.png	flip/022.png	combined/001.png	manipulated_front/013.png

Table 5. InReaCh training data corruptions for 40 corruptions split for the MVTec AD Dataset. For 10 corruption splits, only the first 10 test image labels are incorporated into the training set.

Tile	Toothbrush	Transistor	Wood	Zipper
gray_stroke/006.png	defective/024.png	good/024.png	scratch/018.png	rough/010.png
gray_stroke/012.png	good/005.png	damaged_case/006.png	good/008.png	fabric_interior/008.png
good/019.png	defective/018.png	good/030.png	hole/007.png	split_teeth/006.png
oil/000.png	defective/007.png	good/035.png	good/011.png	combined/014.png
oil/009.png	defective/006.png	damaged_case/005.png	good/005.png	fabric_interior/009.png
glue_strip/001.png	defective/019.png	misplaced/002.png	scratch/020.png	fabric_border/003.png
glue_strip/003.png	defective/013.png	damaged_case/009.png	good/012.png	broken_teeth/010.png
crack/016.png	defective/011.png	good/027.png	hole/003.png	split_teeth/009.png
crack/004.png	good/000.png	good/051.png	good/003.png	rough/004.png
good/002.png	defective/026.png	damaged_case/003.png	scratch/011.png	broken_teeth/001.png
good/031.png	defective/005.png	good/053.png	liquid/005.png	broken_teeth/013.png
oil/006.png	defective/002.png	bent_lead/007.png	color/007.png	good/018.png
oil/017.png	good/002.png	good/036.png	scratch/017.png	good/007.png
glue_strip/011.png	defective/020.png	cut_lead/004.png	scratch/007.png	split_teeth/002.png
good/025.png	good/003.png	good/043.png	scratch/009.png	squeezed_teeth/002.png
good/012.png	good/009.png	good/040.png	liquid/003.png	good/002.png
gray_stroke/009.png	defective/021.png	damaged_case/001.png	color/001.png	squeezed_teeth/008.png
good/030.png	good/008.png	good/056.png	liquid/006.png	fabric_border/001.png
gray_stroke/014.png	good/011.png	cut_lead/006.png	good/004.png	squeezed_teeth/012.png
good/026.png	defective/017.png	good/017.png	good/002.png	good/015.png
oil/003.png	defective/022.png	cut_lead/009.png	color/006.png	broken_teeth/017.png
glue_strip/016.png	defective/010.png	good/050.png	color/003.png	split_teeth/005.png
crack/012.png	good/001.png	cut_lead/001.png	combined/006.png	fabric_border/004.png
gray_stroke/003.png	defective/015.png	good/012.png	scratch/008.png	combined/013.png
gray_stroke/005.png	defective/012.png	good/032.png	hole/004.png	broken_teeth/004.png
oil/010.png	defective/016.png	good/000.png	good/016.png	fabric_interior/006.png
oil/013.png	good/006.png	good/008.png	combined/004.png	rough/001.png
rough/007.png	good/007.png	good/038.png	combined/002.png	good/000.png
gray_stroke/001.png	defective/003.png	misplaced/004.png	scratch/010.png	split_teeth/014.png
good/005.png	defective/023.png	bent_lead/000.png	good/013.png	fabric_border/014.png
rough/000.png	defective/027.png	good/058.png	hole/006.png	rough/008.png
glue_strip/010.png	good/010.png	good/005.png	scratch/016.png	fabric_border/007.png
good/010.png	defective/025.png	good/055.png	liquid/007.png	good/004.png
rough/014.png	defective/000.png	misplaced/000.png	scratch/013.png	rough/005.png
oil/012.png	defective/009.png	good/020.png	liquid/008.png	combined/007.png
oil/004.png	defective/014.png	good/033.png	scratch/004.png	split_teeth/013.png
rough/004.png	defective/001.png	good/025.png	scratch/006.png	good/025.png
oil/015.png	defective/028.png	bent_lead/004.png	good/015.png	good/022.png
good/015.png	defective/029.png	good/018.png	good/000.png	broken_teeth/014.png
rough/011.png	defective/008.png	good/011.png	good/010.png	broken_teeth/015.png

Table 6. InReaCh training data corruptions for 40 corruptions split for the MVTec AD Dataset. For 10 corruption splits, only the first 10 test image labels are incorporated into the training set.