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1. Overview
The supplementary material is organized into the follow-

ing sections:

• Section 2: Training details for the pretraining stage and
all downstream tasks.

• Section 3: Details on calculations of CO2 impact.

• Section 4: Further analysis on the SpaceNet2 super-
resolution task.

2. Training Details
We provide the training details for the various stages and

tasks in our evaluation. Code, model weights, and GeoPile
dataset are publicly available at https://github.
com/mmendiet/GFM.

Change Detection: We modify the MMsegmentation
[3] framework to conduct our change detection experi-
ments. For OSCD, as the raw image size is large but the
number of samples is very small, we tile the images into
192×192 pixels and train for 4000 iterations. We utilize
the RGB bands for OSCD as in [8]. For DSFIN, we train
for 10k iterations with image size 512×512. We employ an
SGD optimizer with a learning rate of 0.01 and weight de-
cay of 5.0e-4, and the default polynomial scheduler of [3].

Classification: On UC Merced, we train with a batch
size of 1024 (128 per GPU) at image size 256×256. We
train for 100 epochs with a base learning rate of 1.0e-4. We
employ random flip, crop and standard Mixup [11] augmen-
tation. Optimizer, weight decay, Mixup parameters, and
other training settings are the same as in [10]. For BigEarth-
Net, we slightly upscale the original 120×120 images to
128×128 for ease of dimensional compatibility with the
Swin transformer. We then employ the same training set-
tings as with UC Merced.

*Work done as an intern at Amazon Web Services

Segmentation: We employ the MMsegmentation [3]
framework to conduct our segmentation experiments. For
both datasets, we train for 40k iterations with an image size
of 512×512. All other training settings are the same as
the default configuration in [3] for the respective backbones
(Swin, ViT, ResNet50) and compatible decoders (UperNet
[9] for transformers and Deeplabv3 [1] for ResNets).

Super-resolution: On the SpaceNet2 super-resolution
tasks, we train with a batch size of 64 (16 per GPU) with in-
put image size 160×160 and target size 640×640. We train
for 100 epochs with a base learning rate of 1.25e-5. Opti-
mizer, weight decay, and other training settings are the same
as in [10], but with no random augmentations. We employ
the standard decoder from [10] to produce the original in-
put size from the encoder features, and then upscale using a
convolution-based upsampling block based on the image re-
construction module for classic super-resolution employed
in [6]. Detailed results for all downstream experiments and
ablations from the main manuscript are provided in Table 2.

3. Training Time and Carbon Calculations

To calculate the CO2 impact of training various mod-
els, we employ the ML CO2 Impact estimator at https:
//mlco2.github.io/impact from [5]. The total im-
pact is dependent on the hardware type, GPU provider, re-
gion, and total time used. Our pretraining experiments were
conducted in the AWS US East (Ohio) region, which has a
carbon efficiency of 0.57 kg eq. CO2 per kWh. For our
GFM, just 93.3 V100 GPU hours are needed for training,
resulting in a total carbon impact of 13.3 kg eq. CO2.
This is significantly lower than the previous state-of-the-
art geospatial model, SatMAE [2]. According to the re-
ported carbon impact in their paper [2], SatMAE requires
768 V100 GPU hours and 109.44 kg eq. CO2 on the Google
Cloud Platform us-central1 region, which has a carbon ef-
ficiency of 0.57 kg eq. CO2 per kWh (same as AWS US
East Ohio). Therefore, GFM enables more than 8× reduc-



Table 1. SpaceNet2 super-resolution results with the residual con-
nection.

Method PSNR ↑ SSIM ↑
ViT (ImageNet-22k)[4] 22.548 0.629

SatMAE [2] 22.450 0.636
Swin (random) [7] 22.190 0.642

Swin (ImageNet-22k) [7] 22.918 0.640

GFM 22.963 0.660

tion in total training time and carbon impact in comparison
to SatMAE.

4. Super-resolution with Residual Connection
In super-resolution tasks, a residual connection can be

included from the input to the output stage [6]. We make
this modification as well for both ViT and Swin, and present
the results in Table 1. Interestingly, the Swin transformer
benefits from this, while ViT does not. Nonetheless, in com-
parison to baselines, the conclusion is the same; SatMAE
is not able to improve over its ImageNet-22k baseline, but
GFM does.
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Table 2. Detailed downstream results for all experiments in the main manuscript. We abbreviate the following for horizontal space: UC
Merced (UCM), BigEarthNet (BEN), WHU Aerial (WHU), Vaihingen (Vai), SpaceNet2 (SN2). † indicates vanilla continual pretraining.

Method OSCD (F1) DSFIN (F1) UCM BEN 10% BEN 1% WHU Vai. SN2 (PSNR) SN2 (SSIM)

ImageNet-22k baseline 52.35 69.62 99.0 85.7 79.5 90.4 74.7 21.655 0.612

Sentinel-2 55.14 64.31 94.5 84.9 70.0 86.2 63.3 19.961 0.566
GeoPile 56.59 68.31 98.8 86.0 79.2 89.4 73.6 22.315 0.630
GeoPile† 57.10 66.88 98.7 86.2 79.3 90.0 74.6 22.566 0.638

GeoPile† (800ep) 57.52 66.23 98.8 86.3 79.3 90.1 75.1 22.626 0.645

Stage 1 56.20 69.79 98.1 85.8 78.3 89.0 73.3 22.153 0.626
Stage 2 58.97 68.27 96.9 86.1 79.0 89.4 72.2 22.409 0.625
Stage 4 60.31 68.97 98.3 86.1 80.8 89.8 73.0 22.495 0.638

Both Init. 58.01 69.77 98.5 85.8 77.2 90.1 74.1 22.930 0.669

w/o WHU-RSD46 58.79 69.25 98.3 86.1 80.6 89.7 72.9 22.510 0.632
w/o MLRSNet 60.01 69.21 98.8 86.1 80.5 89.9 72.9 22.409 0.633
w/o Resisc45 58.33 69.22 98.6 86.3 80.7 89.8 72.4 22.206 0.635

w/o PatternNet 59.00 70.37 98.3 86.3 80.5 89.8 71.9 22.293 0.629
w/o curated datasets 58.49 67.16 98.1 85.7 79.9 88.9 72.7 22.852 0.584

w/o NAIP 58.72 70.54 98.3 85.5 79.6 89.7 70.8 22.574 0.632

GFM 59.82 71.24 99.0 86.3 80.7 90.7 75.3 22.599 0.638


