
Supplementary Material

1. Abstract
We present additional experiments and ablation studies,

as well as visualization results. In supplementary experi-
ments, we give a more detailed comparison process. In ab-
lation studies, we perform experiments using different types
of setup methods. In the visualization results, we present the
embedding visualizations, some results with superior per-
formance as well as those with less than satisfactory perfor-
mance, and finally analyze the corresponding reasons.

2. Supplementary Experiments
Comparasion with OUTrack. We perform a more de-

tailed comparison with OUTrack on the MOT17 test set.
We conduct the experiments under the same conditions, i.e.,
all are trained 30 epochs based on the pre-trained model
on the CrowdHuman dataset. The final feedback results
are obtained from MOT benchmark. The first row of Ta-
ble 1 shows the results of OUTrack, The second row is
the replacement of our method with UTrack, and the third
row is our unsupervised method UCSL. By comparison, we
observe that although OUTrack uses an explicit occlusion
estimation module and achieves advanced results on FP,
our method performs better on other metrics, especially on
MOTA, IDF1 and IDS.

Performance on TBD paradigm. To demonstrate the
effectiveness of our method in TBD paradigm, we use the
classical method DeepSort as the representative. We utilize
our method, UCSL, to train the ReID network of DeepSort.
To be consistent with the paper, we also use the default Cen-
terNet as the private detector. As shown in Table 2, we test it
on MOT17. As an unsupervised method, we outperform the
corresponding supervised DeepSort in MOTA and HOTA
metrics, and are also comparable to it in other aspects.

3. Additional Ablation Studies
In our overall loss, we do not use any weights to balance

every loss, just simply add them up. We focus on the impact
of the method itself rather than on improving performance
by weighting the losses. In our unsupervised method, we in-
troduce only one additional hyper-parameter, i.e., the sim-
ilarity threshold used in ambiguous contrast to determine
whether an object is ambiguous or not. By default, we use
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Figure 1. Comparison on object matching during training.

a fixed value (0.7) for simplicity.
We explore the effect of different threshold settings, in-

cluding using the fixed value and mean value, on the re-
sults in Table 3. Among given fixed values, although the re-
sults corresponding to 0.6 and 0.8 are comparable to 0.7 for
some metrics, they are weaker for others. 0.7 corresponds
to the strongest results in terms of overall performance. For
another setting method “mean”, after calculating the aver-
age similarity (mean), we treat the objects with similarity
greater than the mean and less than 1−mean as ambiguous
objects for subsequent operations. Its results are very sim-
ilar to those of the fixed value 0.8 and do not show better
performance.

4. Visualization
In this section, we first show the embedding visualiza-

tions during training. Then we present the superior perfor-
mance in most cases, and analyze the reasons for observed
failure cases in the tracking process.

4.1. Embedding Visualization

Embedding matching. Figure 1 shows the matching
results between objects according to ReID features during
unsupervised training with the same input. The second col-
umn shows the results initialized with the same weights, fol-
lowed by the results using the weights of the 5th, 10th, 20th
and final epoch, respectively. We visualized the matching
matrix in the training process for two groups in the ablation
experiments, i.e., using only CycAs loss and using the final
contrast similarity loss to visually demonstrate the superi-
ority of the final approach. Due to the overall trend being
similar to the experimental trend in the table, we do not
show the other loss combinations again here for brevity.



Method MOTA ↑ IDF1 ↑ HOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
OUTack[21] 72.1 68.8 57.3 39.5% 18.3% 28065 124833 4776

UCSL(UTrack[21]) 71.8 70.3 58.4 41.3% 17.1% 35109 119130 4911
UCSL (ours) 73.0 70.4 58.4 40.1% 18.3% 30168 118890 3540

Table 1. Performance on MOT17. “UCSL(UTrack)” means replacing our UCSL with UTrack.

Method MOTA ↑ IDF1 ↑ HOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
DeepSort [40] 69.3 61.7 51.4 41.5% 16.6% 36867 129399 6882

DeepSort [40] + Ours 70.4 61.3 52.3 37.2% 18.3% 27342 131058 8379

Table 2. Performance on TBD paradigm on MOT17 dataset.

Embedding visualization. We use t-SNE to visualize
embeddings acquired by our method during training. We
expect embeddings of the same objects to be as close as
possible and those of different objects to be as far away
from each other as possible. As shown in Figure 2, differ-
ent colors represent different objects. We can see that after
pre-training the objects are roughly distinguished. As the
training goes on, the features of identical objects are very
close together and it is easier to separate different objects
on the feature space, just as we expect.

4.2. Superior Performance

Figure 3 shows the tracking results of our method in cer-
tain scenarios. We take MOT17-12, MOT17-08, MOT17-
07 and MOT17-03 datasets as examples, which contain a
variety of common scenes. We can see that almost all ob-
jects in the figure can be detected and tracked, even if some
are obscured during the movement. When objects disap-
pear and then reappear, they still maintain the original cor-
responding ID. These examples demonstrate that our ap-
proach keeps trajectories consistent and thus performs well
in the majority of tracking cases.

4.3. Failure Case Analysis

The previous section has demonstrated the superior per-
formance of our method, which is able to track objects con-
tinuously in most cases. However, some tracking errors,
such as FP, FN and IDS, are still unavoidable. These errors
are mainly caused by the following reasons.

Occlusion. As mentioned in the previous introduction,
occlusion is one of the most frequent problems in MOT,
especially in crowded scenes, where occlusion can happen
almost every moment. Although our approach has miti-
gated many of the effects of occlusion, the problem per-
sists. As shown in Figure 4, some objects in these frames
are occluded by other objects or non-objects, which com-
bines with the fact that these objects are inherently small
in size relative to the whole frame. So there are few fea-
tures available after being occluded, even so few that they
are overlooked. Therefore, these objects are easily missed.

Hard cases. As can be seen in the first and second im-
ages in Figure 4, the overall environment is very dark, caus-
ing some objects to almost blend in with the environment.
This situation is very challenging for the network. Even
though this type of video is present in the training dataset,
the network balances the tracking of multiple scenes to en-
hance its generalization rather than focusing on this partic-
ular scenario. Therefore, only some of the more obvious
objects can be detected and tracked.

In addition, the quality of the video itself greatly affects
the tracking performance. The corresponding video of the
third and fourth images in Figure 4 has a low resolution,
so intuitively the appearance of objects is ambiguous. The
learned features are also relatively ambiguous, which is not
conducive to distinguishing them from other objects and af-
fects the association.



θ MOTA ↑ IDF1 ↑ HOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
0.5 72.5 69.7 58.0 39.1% 19.4% 28989 122694 3495
0.6 72.6 70.6 58.4 38.3% 19.5% 29664 121626 3465
0.7 73.0 70.4 58.4 40.1% 18.3% 30168 118890 3540
0.8 72.5 70.2 58.2 38.7% 19.1% 28788 122868 3477

mean 72.2 70.5 58.4 38.7% 19.5% 29418 124158 3399

Table 3. Comparison of different settings for ambiguous contrast similarity threshold.

Method Unsup MOTA↑ IDF1↑ HOTA↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓
MOT17

TrackFormer [23] No 74.1 68.0 57.3 47.2% 10.4% 34602 108777 2829
TransTrack [31] No 75.2 63.5 54.1 55.3% 10.2% 50157 86442 3603
TransCenter [41] No 73.2 62.2 54.5 40.3% 18.5% 23112 123738 4614

QDTrack [26] No 68.7 66.3 53.9 40.6% 21.9% 26589 146643 3378
JDE [39] No 56.7 55.0 45.1 25.7% 30.1% 35700 202824 5526

CSTrack [17] No 74.9 72.6 59.3 41.5% 17.5% 23847 114303 3567
FairMOT [45] No 73.7 72.3 59.3 43.2% 17.3% 27507 117477 3303

SimpleReID* [12] Yes 61.7 58.1 46.9 27.2% 32.3% 16872 197632 1864
SimpleReID [12] Yes 69.0 60.7 50.4 41.5% 16.7% 36933 129852 8112

UTrack [21] Yes 71.8 70.3 58.4 41.3% 17.1% 35109 119130 4911
UCSL (ours) Yes 73.0 70.4 58.4 40.1% 18.3% 30168 118890 3540

MOT15
EAMTT [28] No 53.0 54.0 42.5 35.9% 19.6% 7538 20590 7538
TubeTK [25] No 58.4 53.1 42.7 39.3% 18.0% 5756 18961 854
RAR15 [8] No 56.5 61.3 46.0 45.1% 14.6% 9386 16921 428

MTrack [42] No 58.9 62.1 47.9 38.1% 17.5% 6314 18177 750
FairMOT [45] No 55.0 60.2 45.9 39.5% 13.5% 8635 18045 946
UCSL (ours) Yes 59.1 59.2 46.3 46.7% 11.8% 8358 15742 1013

MOT20
TransCenter [41] No 58.5 49.6 54.1 48.6% 14.9% 64217 146019 4695

MTrack [42] No 63.5 69.2 55.3 68.8% 7.5% 96123 86964 6031
FairMOT [45] No 55.7 64.6 52.5 67.4% 6.9% 131548 90421 7018

SimpleReID* [12] Yes 53.6 50.6 41.7 30.3% 25.0% 6439 231298 4335
SimpleReID [12] Yes 61.8 54.8 45.5 60.4% 8.8% 78101 110594 9107

UCSL (ours) Yes 62.4 63.0 52.3 68.0% 7.0% 104164 84799 5459

Table 4. Performance on MOT17, MOT15 and MOT20 test sets. “Unsup” means unsupervised training. “*” denotes using public detections.
Bold and underline indicate unsupervised and supervised best metrics, respectively.
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Figure 2. Visualization of instance embeddings using t-SNE.



Figure 3. Superior performance.

Figure 4. Failure cases.


