
A. M2T - Appendix
A.1. Low discrepancy sequences

We reproduce the definition of discrepancy from Kuipers
and Niederreiter [23, p.88].

Definition 1. The discrepency D of a sequence of numbers
X = x1, . . . , xN is

D(X) = sup
0↵<�1

����
A([↵,�);X)

N
� (� � ↵),

���� (3)

where A(I;X) is the number of points in X that fall into
the interval I .

Intuitively, this measures how “dense” the densest re-
gion in X is compared to how many points we have overall.
For example, a completely uniformly distributed X with N

points has discrepancy 1/N .

Definition 2. A low-discrepancy sequence (LDS) is a se-
quence where every subsequence has low discrepancy.

We use a LDS proposed by Roberts [30], with the fol-
lowing construction of the i-th point xi:

xi = i� mod [1, 1],where � = [1/⇢, 1/⇢2]. (4)

We refer to [30] for details, but to give some intuition: in the
above equation, the important property of � is that applying
it repeatedly modulo 1 covers the space. Contrast, e.g., with
� = [1, 1], which would always map to the same point.

A.1.1 Quantizing LDS

We note that this sequence is constructed for the unit cube,
and we have to quantize it to use it for our representations.
We do this by constructing the quantized LDS x̂i by scal-
ing up and rounding the underlying xi to the integer grid
{0, . . . , wT � 1}⇥ {0, . . . , wT � 1} and skipping over val-
ues of i that are already used (since quantizing will lead
to some values getting sampled more than once), i.e., we
find the smallest integer K such that quantizing x1, . . . ,xK

covers the wT⇥wT grid (which is K = 1381 for wT = 24).

A.1.2 Comparison to other LDS

We explore the well known sequences by Sobol and Hal-
ton (via scipy.stats.qmc [36]). These are defined
in [0, 1) ⇥ [0, 1), so we quantize them to a H⇥W grid
(Sec. A.1.1) We visualize these sequences for S = 8,↵ =
2.2 in Fig. 9 a). We evaluate them in our models (Fig. 9 b)
and see that both Sobol and Halton lead to good bits-per-
pixel (bpp), but the schedule by Roberts (used in the paper)
has a slight advantage. We will add this comparison to the
paper.

a) Various quantized LDS
Roberts

Halton

Sobol

b) Relative bpp increase vs. Roberts

Figure 9: Comparing to Halton and Sobol.

A.2. Additional Accelerators

We show runtime on all accelerators in Fig. 10.

A.3. Implementation Details

We use the ELIC architecture for the autoencoder as de-
tailed in [18, Supplementary Material Sec 1.1, Table 1],
where we use M = 256, N = 192.

We use the AdamW optimizer from Tensorflow Ad-
dons, using weight decay=0.03 · learning rate,
�1=0.9,�2=0.98, ✏=1E�9, global clipnorm=1.4

To improve the training stability of the GMM, we found
it important to adopt the Laplace tail mass approach [7]
(with weight 0.001), falling back to to the (more numer-
ically stable) Laplacian distribution when the probability
predicted by GMM vanishes.

Previous works (e.g. [27, 28]) center the representation
with the mean prediction of the entropy model during quan-
tization, which couples entropy modelling and the recon-
struction. For our models, this poses a problem, since dur-
ing training, we do not know the mean before doing one
pass through the model, so we would have to double the
forward passes to do this. To simplify the setup, we sim-
ply drop this. As an important benefit, dropping the cen-
tering also allows us to employ a patched inference scheme

4https://www.tensorflow.org/addons/api_docs/
python/tfa/optimizers/AdamW

https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/AdamW
https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/AdamW

Figure 10: Speed on all tested platforms as well as FLOPS.

described next without creating block artifacts in the recon-
struction.

A.4. Algorithms
We show pseudo-code for how our masked transformers

can be used on the sender side in neural compression in
Als 1 2.

A.5. Samples
We show samples from the entropy model in Fig. 11. For

Fig. 7 in the main text, we take the average over 50 samples
per step.

A.6. Flax Implementation
We show the flax implementation of M2T in Fig. 12.

Algorithm 1 MT Sender

Require: Input y of shape (b0, w2
T , c), seed s.

c ones(S,C) · mask token . Current Input
masker make masker(seed=s)
for i 2 {1, . . . ,masker.num steps} do

params transformer(c)
m masker.get mask(params)
bit stream bitencode(y[:,m, :], params[:,m, :])
c y[:,m, :] . Uncover input

end for

Algorithm 2 M2T Sender

Require: Input y of shape (b0, P 2
, C), seed s.

masker make masker(seed=s)
yperm permute(masker, y)
t 0 . Total Uncovered
c [] . Current Input
for i 2 {1, . . . ,masker.num steps} do

mlen len(masker.get mask(params))
c.extend(ones(b, mlen, C) · mask token
params, cache transformer(c, cache)
bit stream bitencode(

yperm[:, t : t+mlen, :], params)
c.extend(yperm[:, t : t+mlen, :]) . Uncover input

end for

Figure 11: Raw samples.

import functools
from typing import Optional
from flax.linen import attention
from flax.linen.linear import DenseGeneral
from flax.linen.module import compact, merge_param
from jax import lax
import jax.numpy as jnp

Forked from flax.
class PermutedMHA(attention.MultiHeadDotProductAttention):

@compact
def __call__(

self, inputs_q, inputs_kv, mask=None, deterministic: Optional[bool] = None):
if self.dropout_rate > 0.0:

raise NotImplementedError(’Dropout removed for simplicity.’)
if len(mask.shape) != 2:

raise NotImplementedError(’Only supporting 2D masks at the moment!’)
features = self.out_features or inputs_q.shape[-1]
qkv_features = self.qkv_features or inputs_q.shape[-1]
assert qkv_features % self.num_heads == 0
head_dim = qkv_features // self.num_heads
dense = functools.partial(

DenseGeneral, axis=-1, dtype=self.dtype, param_dtype=self.param_dtype,
features=(self.num_heads, head_dim), kernel_init=self.kernel_init, bias_init=self.bias_init,
use_bias=self.use_bias, precision=self.precision)

query, key, value = (
dense(name=’query’)(inputs_q), dense(name=’key’)(inputs_kv), dense(name=’value’)(inputs_kv))

if self.decode:
assert mask is not None
is_initialized = self.has_variable(’cache’, ’cached_key’)
cached_key = self.variable(’cache’, ’cached_key’, jnp.zeros, key.shape, key.dtype)
cached_value = self.variable(’cache’, ’cached_value’, jnp.zeros, value.shape, value.dtype)
cache_index = self.variable(’cache’, ’cache_index’, lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
*_, count, query_num_heads, query_depth_per_head = query.shape
if query_num_heads != num_heads or query_depth_per_head != depth_per_head:

raise ValueError("Invalid dimensions")
cur_index = cache_index.value
start_indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, start_indices)
value = lax.dynamic_update_slice(cached_value.value, value, start_indices)
cached_key.value = key
cached_value.value = value
We just slice the mask, since it’s q_length, kv_length, and we slide through Q.
mask = lax.dynamic_slice(mask, (cur_index, 0), (count, max_length))
cache_index.value = cache_index.value + count

x = self.attention_fn(
query, key, value,
mask=mask, dropout_rng=None, dropout_rate=self.dropout_rate,
broadcast_dropout=self.broadcast_dropout,
deterministic=True, dtype=self.dtype, precision=self.precision)

return DenseGeneral(
features=features, axis=(-2, -1), kernel_init=self.kernel_init,
bias_init=self.bias_init, use_bias=self.use_bias, dtype=self.dtype,
param_dtype=self.param_dtype, precision=self.precision, name=’out’)(x)

Figure 12: Flax attention implementation for M2T.

A.7. Raw Data
We provide the raw data for the figures of the main text in
Table 2, 3.

MT M2T
0 1 2 3

0.058108 27.079653 0.059169 27.034135
0.094242 28.468065 0.097261 28.408479
0.153969 29.985175 0.162184 29.978115
0.247314 31.652337 0.257729 31.644149
0.380635 33.393239 0.385378 33.372010

Table 2: Raw data for Fig. 1 (Rate-distorion on Kodak).

MT M2T
0 1 2 3

0.043276 29.986596 0.043651 29.888452
0.067407 31.379083 0.069709 31.270813
0.105127 32.825032 0.110558 32.813387
0.159596 34.256665 0.165478 34.246637
0.234286 35.674083 0.235964 35.657870

Table 3: Raw data for Fig. 8 (Rate-distortion on CLIC)

