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1. Implementation Details of MCCauSSL
We use the setting of two networks/branches to illustrate

our proposed method in our manuscript, but it can be easily
extended to more networks or branches in the co-training
framework. MC-Net+ [14] extends MC-Net [15] with 3 de-
coders using the same convolutional architecture but differ-
ent upsampling strategies on top of a shared encoder. In this
section, we’ll show how to extend the network dependence
for two networks to the MC-Net+ with 3 decoder branches
and explain the details of MCCauSSL.

1.1. Network Dependence of MC-Net+

The dependence between two convolutional layers A and
B is defined as Equation 1 in our manuscript:

Lin(A,B;GB) =
1

Cout

Cout∑
i=1

(
vA,i · qB,i

|vA,i| × |qB,i|

)2

qB,i = (GB ×B)i

(1)

where vA,i is the i-th row vector in matrix A, and qB,i is the
optimal linear combination vector using the vector group of
B that can approximate vA,i as close as possible. GB is the
optimal coefficient matrix whose elements are the optimal
linear combination coefficients, with a size of Cout ×Cout.

For the setting of 3 convolutional layers A, B, and C
with the same convolutional architecture from the 3 de-
coders in the MC-Net+ method, the layer dependence is de-
fined as the linear dependence between each layer and the
matrix concatenating the other two layers:

Lin(A, [B,C];GBC) =
1

Cout

Cout∑
i=1

(
vA,i · q[B,C],i

|vA,i| ×
∣∣q[B,C],i
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)2

q[B,C],i = (GBC × [B,C])i
(2)
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where [B,C] is the extended matrix by concatenating B
and C along the row dimension. Thus, the size of the
corresponding optimal coefficient matrix GBC is Cout,A ×
(Cout,B + Cout,C) = Cout × (2Cout), considering A, B,
and C have the same size of Cout × d.

We then define the dependence on the network level
among three branches with the same convolutional architec-
ture by taking the average over all the convolutional layers:

Lin (θ1, [θ2, θ3];G23)

=
1

# layers

# layers∑
i=1

Lin (θ1,i, [θ2,i, θ3,i];G23,i) ,
(3)

where θ1,i, θ2,i, θ3,i, and G23,i are the weight parameters
in the format of matrices of each branch and optimal coef-
ficient matrix of the i-th convolutional layer, respectively.
Only convolutional layers are considered.

1.2. MCCauSSL Algorithm

Based on the network dependence definition, the training
procedure of MCCauSSL is shown in Algorithm 1, where
Ltotal is defined as:

Ltotal,1 = Ls,1 + λ1Lu,1 + λ2Lin(θ1, [θ̄2, θ̄3];G23)

Ltotal,2 = Ls,2 + λ1Lu,2 + λ2Lin(θ2, [θ̄1, θ̄3];G13)

Ltotal,3 = Ls,3 + λ1Lu,3 + λ2Lin(θ3, [θ̄1, θ̄2];G12)

(4)

Ls,i and Lu,i indicate the supervised loss and unsupervised
loss, respectively and λ1, λ2 are balancing coefficients. θ̄1,
θ̄2, and θ̄3 represent weights copy without gradient flows.

2. Implementation Details on Each Dataset
2.1. ACDC Dataset

The ACDC dataset1 [4] contains 200 labeled cine MRI
scans from 100 patients for training and 100 unlabeled scans

1https://acdc.creatis.insa-lyon.fr/



Algorithm 1 Pseudocode of MCCauSSL
Input: labeled data L, unlabeled data U and hyperparam-

eters λ1 and λ2.
Output: Three independent decoder branches parameter-

ized by θ1, θ2 and θ3, and a shared encoder parameterized
by θ.

1: Randomly initialize the network weights θ1, θ2, θ3, θ
and linear coefficients G12, G13, G23. // initialization

2: i = 0 // iteration number
3: while i ≤maximum iterations do // training
4: for j=1:smax do // maximize
5: Fix θ1, θ2, θ3, θ. Update G12, G13, G23 by
6: maximizing Lin(θ3, [θ̄1, θ̄2];G12),
7: Lin(θ2, [θ̄1, θ̄3];G13) & Lin(θ1, [θ̄2, θ̄3];G23).
8: for j=1:smin do // minimize
9: Fix G12, G13, G23. Update θ1, θ2, θ3, θ by

10: minimizing Ltotal,1, Ltotal,2, and Ltotal,3 using
11: Equation 4.
12: i = i+ 1.
13: Return θ1, θ2, θ3, and θ.

from 50 patients for testing. Three regions of interest are de-
lineated for the segmentation task: the right ventricle (RV)
cavity, the myocardium (Myo), and the left ventricle (LV)
cavity. Following [14], only the training dataset was used
in our experiments, which was randomly split at the pa-
tient level, with 70 patients for training, 10 for validation,
and 20 for testing. The volume thickness ranges from 5
to 10 mm while the spatial resolution is between 1.34 and
1.68 mm2/pixel. We directly leverage the processed data by
Luo et al. [7], where the 3D volume data are normalized to
[0,1] first and then sliced to 2D images.

On the ACDC dataset, we employed 2D U-Net [11] as
the segmentation backbone by treating the 3D volume slice
by slice and developed our method on the public source
code of Luo et al. [7] with the same training setting. We
used an SGD optimizer to update network weights and set
the weight decay and the momentum as 0.0001 and 0.9, re-
spectively. We initialized the learning rate to be 0.01 and

updated it following lr (t) = 0.01*
(
1− t

tmax

)0.9
, where

t is the iteration number and tmax means the total iteration
number, i.e., 30000 on this dataset. The batch size was 24,
containing 12 labeled images and 12 unlabeled ones. The
coefficient of the algorithmic independence constraint λ2

was set as 1.0 and 0.2 for CPSCauSSL and MCCauSSL, re-
spectively. In training, we first resized all the sliced images
to 256×256 and took the random rotation between [-20◦,
20◦] and random flip operations as data augmentation. The
predictions were scaled back to the original size and stacked
into 3D volumes in the testing phase for metric evaluation.

2.2. Pancreas-CT Dataset

The Pancreas-CT dataset2 [6, 12, 13] collected by the
National Institutes of Health Clinical Center contains 82 ab-
dominal contrast enhanced 3D CT scans for pancreas seg-
mentation. The slice thickness varies in the range between
1.5 and 2.5 mm. For data preprocessing, all the volumes
were resampled into an isotropic resolution of 1.0 mm in all
axes. The intensity values were also clipped to [-125, 275]
Hounsfield units (HU) following [8, 14]. Moreover, we
cropped the region including the pancreas from the original
volume with an enlarged margin of 25 voxels and normal-
ized them to zero mean and unit variance as done in [8, 14].
We adopted the same data split as [8], using 62 and 20 vol-
ume data for training and testing, respectively.

On the Pancreas-CT dataset, 3D V-Net [10] was chosen
as the baseline backbone. According to [8, 14], the input
size of each volume patch was 96×96×96 and the batch
size was set as 4, with 2 labeled data. All the networks were
trained for 5k iterations using an SGD optimizer with the
same settings as above. In addition, we scaled down the
learning rate by 0.1 every 2.5k iterations. During inference,
a sliding window strategy with a stride of 16 in each axis
was utilized following [8, 14]. We empirically set λ2 as 3.0
for both CPSCauSSL and MCCauSSL on this dataset.

2.3. BraTS’2019 Dataset

BraTS’2019 dataset [1, 2, 3, 9] contains multi-
institutional pre-operative MRI scans collected from 335
glioma patients. For each patient, there are four modali-
ties of MRI scans, including T1, T2, Flair, and T1Ce. 3
sub-regions are delineated: 1) the ”enhancing tumor” (ET),
2) the ”tumor core” (TC), and 3) the ”whole tumor” (WT).
Following Xu et al. [16], we only used the Flair images for
whole tumor segmentation in our experiments to evaluate
the performance of our proposed semi-supervised learning
method, since the WT segmentation is able to describe the
complete extent of the disease and is critical to brain surgery
of low-grade glioma [17]. Also, it is typically depicted by
hyper-intense signals in FLAIR. We directly used the data
processed by Luo et al. [7], where 250, 25, and 60 samples
are used for training, validation, and testing, respectively.

We developed our method on the public source code of
Luo et al. [7] on this dataset, where a 3D U-Net [5] with
an input patch size of 96×96×96 was adopted as the back-
bone. The batch size was set as 4, containing 2 labeled
data and 2 unlabeled ones. All the networks were optimized
for 30000 iterations using an SGD optimizer, whose initial
learning rate was 0.01. The learning rate was updated ac-
cording to the same way on the ACDC dataset. The coef-
ficient of the algorithmic independence constraint λ2 was
set as 0.05 and 1.0 for CPSCauSSL and MCCauSSL, re-

2https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT



spectively. During training, random rotation, flip, and crop
augmentations were taken. For the inference, we utilized a
sliding window strategy based on the stride of 64 in all axes.

References
[1] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel

Bilello, Martin Rozycki, Justin S Kirby, John B Freymann,
Keyvan Farahani, and Christos Davatzikos. Advancing the
cancer genome atlas glioma mri collections with expert seg-
mentation labels and radiomic features. Scientific data,
4(1):1–13, 2017.

[2] Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan
Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi
Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki,
et al. Identifying the best machine learning algorithms for
brain tumor segmentation, progression assessment, and over-
all survival prediction in the brats challenge. arXiv preprint
arXiv:1811.02629, 2018.

[3] Spyridon (Spyros) Bakas. Brats miccai brain tumor dataset,
2020.

[4] Olivier Bernard, Alain Lalande, Clement Zotti, Freder-
ick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin,
Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez
Ballester, et al. Deep learning techniques for automatic mri
cardiac multi-structures segmentation and diagnosis: is the
problem solved? IEEE transactions on medical imaging,
37(11):2514–2525, 2018.
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