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1. Diffusion Process for DDS2M

Given a degraded HSI y, the diffusion model defined in
DDS2M is Markov chain xT → xT−1 → . . . → x1 → x0

conditioned on y [4], where x0 is the underlying high-
quality HSI (final diffusion output). In order to perform
inference, the following variational distribution is consid-
ered:

q (x1:T |x0,y) = q (xT |x0,y)

T−1∏
t=0

q (xt|xt+1,x0,y) ,

(1)
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(2)
where x̄t

(i) is the i-th index of vector x̄t = VTxt, ȳ(i) is
the i-th index of ȳ = Σ†UTy, σt depending on the hy-
perparameter β1:T denotes the variance of diffusion noise
in xt, and η, ηb are the hyperparameters, which control the
level of noise injected at each timestep.

It has been proved that the variational distribution de-
fined in Eqn. (1) and (2) has the following marginal distri-
bution equivalent to that in [3, 8]:

q (xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
(3)
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And the diffusion process (i.e., forward process) can be de-
rived from Bayes’ rule:

q (xt|xt−1,x0,y) =
q (xt−1|xt,x0,y) q (xt|x0,y)

q (xt−1|x0,y)
(4)

2. Loss Function Derivations
Below is the deviation of our variational inference-based

function:

Eq(x0),q(y|x0) [log pθ,ζ (x0|y)]
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By maximizing the variational lower bound of
Eq(x0),q(y|x0) [log pθ,ζ (x0|y)], we have
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For t > 1:
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For t = 1:
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Therefore, the objective in Eqn. (5) can be reduced
into a denoising objective, i.e., estimating the underlying
high quality HSI x0 from the noisy version xt. Inspired
by the self-supervised loss functions in [9], our variational
inference-based loss function can be designed as follows:

arg min
{θ,ζ}

∥∥∥∥xt − vec(
√
ᾱt
∑R

r=1
Sθ(zr) ◦ Cζ(wr))

∥∥∥∥2
F

.

(10)

3. HSI Decomposition Utilized in DDS2M
Under linear mixture model [7], X ∈ RI×J×K can be

factorized as follows (when the noise is absent):

X =
∑R

r=1
Sr ◦ cr, (11)

where Sr ∈ RI×J and cr ∈ RK represent the r-th end-
member’s abundance map and the spectral signature, re-
spectively, and R is the number of endmembers contained
in the HSI. This decomposition can also be expressed as

X (i,j,k) =

R∑
r=1

S(i,j)
r ckr . (12)

Physically, it means that every pixel is a non-negative com-
bination of the spectral signatures of the constituting end-
members in the HSI. An illustration of this decomposition
can be found in Figure 1. In addition, this decomposition
with a relatively small R can often capture around 98% of
the energy of the HSI [1]. Hence, it is a reliable model
for HSIs. Indeed, this decomposition has been utilized for
a large variety of hyperspectral imaging tasks, e.g., hyper-
spectral unmixing [11, 2], hyperspectral super-resolution
[5], pansharpening [6], and denoising [12], just to name a
few.

S1
S2 Sr

c1 c2 cr

Figure 1. Illustration of the HSI decomposition utilized in DDS2M.

4. Concrete Network Structure of DDS2M
In DDS2M, we propose to introduce the attention mech-

anism [10] into the U-Net, for abundance map modeling
which aims to enhance the self-supervised expression abil-
ity of the VS2M. The concrete network structure is illus-
trated in Figure 2.

5. Visualization of Reverse Diffusion Process
We visualize the sampling process in the Figure 3, and

report the history PSNR values during the reverse diffusion
process in Figure 4, in which HSI Balloons and Fruits are
selected as examples.
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Figure 2. The concrete U-Net structure used in DDS2M.
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Figure 3. Visualization of the reverse diffusion process in DDS2M.
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Figure 4. The history PSNR values during the reverse diffusion
process.
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