
Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters
Supplemental Material

Mateusz Michalkiewicz
University of Queensland

Masoud Faraki
NEC Labs America

Xiang Yu
Amazon *

Manmohan Chandraker
NEC Labs America,

University of California, San Diego

Mahsa Baktashmotlagh
University of Queensland

We provide additional material to supplement our work.
Section 1 describes additional experimental results that
cover Digits-DG and VLCS benchmarks, as well as applica-
bility of our approach to different backbones. In Section 2
we address two key aspects. Firtly, we demonstrate that
by iteratively dropping the most predictive parameters, the
model is forced to learn less dominant features. Secondly,
we extend the scope of the ablation study to encompass the
intermediate dropout masks. We report on the impact of
ImageNet pre-training in Section 3 and provide details on
baseline implementation in Section 4. Lastly, code listings
are appended in Section 5.

1. Additional experiments
Digits-DG. We expand the experimental validation of our
method over Digits-DG [29] dataset which covers digit
images with various styles, colors and backgrounds com-
ing from MNIST [19], MNIST-M [10], SVHN [22] and
SYN [10] datasets. Table 1 shows that our method obtains
best performance averaged across all 4 domains.

Table 1: Classification accuracy (%) on the Digits-DG
dataset [29]. The bold numbers indicate the best perfor-
mance averaged across all test domains.

Digits-DG MNIST MNIST-M USPS SVHN Synthetic Avg ↑
Baseline 86.15 74.44 90.07 81.29 94.46 85.28

DSBN [3] 87.01 71.20 91.18 78.23 94.30 84.38
SN [21] 89.28 78.40 88.54 79.12 95.66 86.20

DSON [23] 89.62 79.00 91.63 81.02 95.34 87.32
Ours 96.97 84.38 90.82 80.11 96.21 89.69

VLCS. We conclude our classification experiments with
VLCS dataset [24] which spans 10 729 images grouped into
5 categories. Each image belongs to one of the following

*Work done while Xiang was at NEC Labs America

domains: SUN09 [28], LabelMe [25], PASCAL VOC 2007
[8], Caltech-101 [9]. Results presented in Table 2 further
demonstrate the generalization capability of our method.

Table 2: Classification accuracy (%) on the VLCS
dataset [24]. The bold numbers indicate the best perfor-
mance averaged across all test domains.

VLCS Caltech LabelMe VOC2007 SUN09 Avg ↑
Baseline 96.25 59.72 70.58 64.51 72.76
JiGen [2] 96.93 60.90 70.62 64.30 73.19
RSC [14] 97.61 61.86 73.93 68.32 75.43

Ours 97.49 65.47 73.82 68.43 76.30

DNNs. We show the versatility of our approach by applying
it to various backbones. Table 3 shows that the performance
gap increases with the depth of the backbones: growing
from 0.89% on AlexNet [18] to 2.25% on ResNet50 [13].

Table 3: Classification accuracy (%) on PACS [20] using
various backbones. The bold numbers indicate the best per-
formance averaged across all test domains.

PACS artpaint cartoon sketch photo Avg ↑

A
le

xN
et MASF [7] 70.35 72.46 67.33 90.68 75.21

DMG [4] 64.65 69.88 71.42 87.31 73.32
RSC [14] 70.93 71.62 71.35 90.23 76.03

Ours 72.25 73.23 70.69 91.52 76.92

R
es

N
et

18 MASF [7] 80.29 77.17 71.68 94.99 81.03
DMG [4] 76.90 80.38 75.21 93.35 81.46
RSC [14] 80.73 79.22 81.48 94.16 83.90

Ours 83.64 80.03 84.37 95.32 85.84

R
es

N
et

50 MASF [7] 82.89 80.49 72.29 95.01 82.67
DMG [4] 82.57 78.11 78.32 94.49 83.37

ITL-Net [11] 87.1 83.3 96.1 79.3 86.4
EoA [1] 90.5 83.4 98.0 82.5 88.6
DNA [5] 89.8 83.4 97.7 82.6 88.4

Style Neophile [16] 90.35 84.20 96.73 85.18 89.11
RSC [14] 84.08 84.59 83.76 95.56 86.99

Ours 87.93 85.53 86.68 96.83 89.24

1

2. Additional analysis
Less dominant features assumption. Similar to the RSC
algorithm, our method learns more generalizable features
by muting the feature representations associated with the
highest loss gradient, such that the network is forced to pre-
dict the labels through alternative features. Therefore, it
is worthwhile to study loss difference at every iteration of
the training algorithm. Loss difference can be expressed as
Γ(θ̂(t)) = |h(θ̂(t), zt) − h(θ̂(t), z̃t)|, where θ̂ denotes the
estimated parameters of the model at time t, z̃t are masked
features z and h denotes the task component of the back-
bone f defined as h(θ̂, z) =

∑
(z,y) l(f(z; θ̂); y) with y be-

ing labels and l a generic loss function. We show that Γ
is decreasing over training time of 30 epochs in Figure 1.
Notice, that Γ is the empirical approximation of ξ, a key
component in the generalization bound (see Corollary 1 in
the RSC paper for detailed discussion) and therefore lower
Γ implies tighter bound and better generalization.

0 5 10 15 20 25 30
Epoch

0.2

0.4

0.6

0.8

M
ea

n
Lo

ss
 D

iff
er

en
ce

RSC
Ours

Figure 1: Temporal evolution of the loss difference Γ(θ(t))
on PACS dataset.

Ablation of M (1) and M (2). We demonstrate the impact of
the intermediate masks M (1) and M (2) of our approach in
Table 4. If M (1) or M (2) is set to 0, all ResNet blocks will
be zeroed and the network is unable to learn any relevant
features. If we set M (1) to 1, the regularization process is
guided solely by a Bernoulli distribution, resulting in a sim-
ilar performance to the baseline. By setting M (2) to 1, our
approach collapses to DB+gsnr , where the dropout ratios
have to be tuned manually. With M (1) and M (2) both set
to 1, no regularization occurs and the performance becomes
similar to baseline.

3. Impact of ImageNet Pre-training
Following common practice, we pre-train our classifica-

tion model on ImageNet [6]. For completeness, we also

Table 4: Ablation study: impact of the intermediate masks
on the proposed Meta-GSNR approach. For simplicity, we
denote 0 and 1 as all-zeros and all-ones matrices.

PACS artpaint cartoon sketch photo Avg ↑
Meta-GSNR w/M (1) ·M (2) = 0 10.88 21.84 04.42 16.64 13.44

Meta-GSNR w/M (1) = 1 78.12 76.57 75.16 94.49 81.08
Meta-GSNR w/(M (2) = 1 80.85 80.73 81.85 94.79 84.55

Meta-GSNR w/M (1) = M (2) = 1 77.49 77.21 72.67 92.45 79.95
Meta-GSNR 83.64 80.03 84.37 95.32 85.84

report accuracies obtained on PACS dataset using models
trained from scratch in Table 5. Our approach outperforms
RSC in both settings by approximately 2%. Similar to [17],
we observe that a pre-trained baseline outperforms other do-
main generalization methods that are trained from scratch,
indicating that both settings should be reported in future re-
search.

Table 5: Classification accuracy (%) on the PACS dataset
[20]. The bold numbers indicate the best performance in
each setting.

PACS artpaint cartoon sketch photo Avg ↑
Pre-trained on ImageNet

Baseline 78.63 75.27 68.72 96.08 79.68
RSC [14] 80.73 79.22 81.48 94.16 83.90

Ours 83.64 80.03 84.37 95.32 85.84
Trained from scratch

Baseline 52.19 65.01 68.23 75.38 65.20
RSC [14] 56.49 65.74 80.05 68.64 67.72

Ours 60.55 69.50 72.74 78.14 70.23

4. Reproduced Results
For fair comparison, in the experimental section of the

main paper, we have reported the HTER and AUC metrics
of SSDG [15], SSAN [26], and EPCR [27] methods obtained
by running the code from the official repositories 1 2 3 .
Similarly, we used the official code repository of RSC [14]
4 to report baseline, RSC, and ours.

5. Code Listings
Listing 1 illustrates how to obtain gradients in a typical

forward pass, and Listing 2 shows how our dropout proce-
dure can be applied. Our approach is based on TorchVision
5 implementation of DropBlock [12].

1https://github.com/taylover-pei/SSDG-CVPR2020
2https://github.com/wangzhuo2019/SSAN
3https://github.com/clks-wzz/EPCR
4https://github.com/DeLightCMU/RSC
5https://pytorch.org/vision/stable/index.html

1 # forward pass to obtain gradients
2 class_logit, ResNetBlocks = model(images, labels, grads=None)
3 loss = criterion(class_logit, labels)
4 grads = [torch.autograd.grad(loss, ResNetBlock)[0] for ResNetBlock in ResNetBlocks]
5 # forward pass to apply GSNR-guided dropout
6 class_logit, _ = model(data, labels, grads)
7 loss = criterion(class_logit, labels)
8 loss.backward()
9 optimizer.step()

Listing 1: Obtaining gradients in a forward pass

1 def drop_block2d_gsnr(
2 input: Tensor, grads: Tensor, p: float, p_gsnr: float, block_size: int,
3 inplace: bool = False, eps: float = 1e-06, training: bool = True
4) -> Tensor:
5 """
6 Args:
7 input (Tensor[N, C, H, W]): The input tensor or 4-dimensions with the first one
8 being its batch i.e. a batch with ``N`` rows.
9 grads (Tensor[N, C, H, W]): Gradients of the loss function with respect to

10 the input tensor.
11 p (float): Probability of an element to be dropped.
12 p_gsnr (float): Probability of dropout to be applied.
13 block_size (int): Size of the block to drop.
14 inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``.
15 eps (float): A value added to the denominator for numerical stability. Default: 1e-6.
16 training (bool): apply dropblock if is ``True``. Default: ``True``.
17

18 Returns:
19 Tensor[N, C, H, W]: The randomly zeroed tensor after dropblock.
20 """
21 def calc_gsnr(grads, eps=10**-7):
22 ''' computes batch-wise gsnr '''
23 grads_mean = grads.reshape(grads.shape[0], -1).mean(dim=0)
24 grads_var = grads.reshape(grads.shape[0], -1).var(dim=0)
25 gsnr = grads_mean**2/(grads_var+eps)
26 return gsnr
27

28 if p < 0.0 or p > 1.0:
29 raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.")
30 if input.ndim != 4:
31 raise ValueError(f"input should be 4 dimensional. Got {input.ndim} dimensions.")
32 if not training or p == 0.0:
33 return input
34

35 assert grads.shape == input.shape
36 N, C, H, W = input.size()
37 block_size = min(block_size, W, H)
38

39 gamma = (p * H * W) / ((block_size**2) * ((H - block_size + 1) * (W - block_size + 1)))
40 gsnr = calc_gsnr(grads).reshape(grads.shape[1:]).unsqueeze(dim=0)
41 thresh_idx = C*(H - block_size + 1) * (W - block_size + 1) * gamma * block_size**2
42 thresh_idx = int(thresh_idx)
43 thresh_val = torch.sort(gsnr.flatten(), descending=True)[0][thresh_idx]
44 window_size = H - block_size + 1
45 noise = gsnr[:,:,block_size-1:block_size-1+window_size,block_size-1:block_size-1+window_size]
46 noise = (noise >= thresh_val)*1.0
47 assert noise.shape == (N//N, C, H - block_size + 1, W - block_size + 1)
48

49 noise_gsnr = torch.empty((1, C, H - block_size + 1, W - block_size + 1),
50 dtype=input.dtype, device=input.device)
51 noise_gsnr.bernoulli_(p_gsnr)
52 noise = noise * noise_gsnr
53

54 noise = F.pad(noise, [block_size // 2] * 4, value=0)
55 noise = F.max_pool2d(noise, stride=(1, 1), kernel_size=(block_size, block_size),
56 padding=block_size // 2)
57 noise = 1 - noise # now high gsnr values are zeroed
58 normalize_scale = noise.numel() / (eps + noise.sum())
59 if inplace:
60 input.mul_(noise).mul_(normalize_scale)
61 else:
62 input = input * noise * normalize_scale
63 return input

Listing 2: GSNR-guided dropout strategy

References

[1] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming
Xiong. Ensemble of averages: Improving model selection
and boosting performance in domain generalization. Ad-
vances in Neural Information Processing Systems, 35:8265–
8277, 2022. 1

[2] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-
bara Caputo, and Tatiana Tommasi. Domain generalization
by solving jigsaw puzzles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2229–2238, 2019. 1

[3] Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak,
and Bohyung Han. Domain-specific batch normalization
for unsupervised domain adaptation. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pages 7354–7362, 2019. 1

[4] Prithvijit Chattopadhyay, Yogesh Balaji, and Judy Hoffman.
Learning to balance specificity and invariance for in and out
of domain generalization. In European Conference on Com-
puter Vision, pages 301–318. Springer, 2020. 1

[5] Xu Chu, Yujie Jin, Wenwu Zhu, Yasha Wang, Xin Wang,
Shanghang Zhang, and Hong Mei. Dna: Domain general-
ization with diversified neural averaging. In International
Conference on Machine Learning, pages 4010–4034. PMLR,
2022. 1

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[7] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic
learning of semantic features. Advances in Neural Informa-
tion Processing Systems, 32:6450–6461, 2019. 1

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88:303–308, 2009. 1

[9] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
2004 conference on computer vision and pattern recognition
workshop, pages 178–178. IEEE, 2004. 1

[10] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 1

[11] Boyan Gao, Henry Gouk, Yongxin Yang, and Timothy
Hospedales. Loss function learning for domain generaliza-
tion by implicit gradient. In International Conference on Ma-
chine Learning, pages 7002–7016. PMLR, 2022. 1

[12] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A
regularization method for convolutional networks. Advances
in neural information processing systems, 31, 2018. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[14] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang.
Self-challenging improves cross-domain generalization. In
European Conference on Computer Vision, pages 124–140.
Springer, 2020. 1, 2

[15] Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen.
Single-side domain generalization for face anti-spoofing. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8484–8493, 2020. 2

[16] Juwon Kang, Sohyun Lee, Namyup Kim, and Suha Kwak.
Style neophile: Constantly seeking novel styles for domain
generalization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7130–
7140, 2022. 1

[17] Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate
Saenko. A broad study of pre-training for domain gener-
alization and adaptation. arXiv preprint arXiv:2203.11819,
2022. 2

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
1

[20] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 1, 2

[21] Ping Luo, Jiamin Ren, Zhanglin Peng, Ruimao Zhang, and
Jingyu Li. Differentiable learning-to-normalize via switch-
able normalization. arXiv preprint arXiv:1806.10779, 2018.
1

[22] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 1

[23] Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jong-
woo Han, and Bohyung Han. Learning to optimize domain
specific normalization for domain generalization. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXII 16,
pages 68–83. Springer, 2020. 1

[24] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In CVPR 2011, pages 1521–1528. IEEE, 2011.
1

[25] Antonio Torralba, Bryan C Russell, and Jenny Yuen. La-
belme: Online image annotation and applications. Proceed-
ings of the IEEE, 98(8):1467–1484, 2010. 1

[26] Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jia-
hong Li, Tingting Gao, and Zhongyuan Wang. Domain gen-
eralization via shuffled style assembly for face anti-spoofing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4123–4133, 2022. 2

[27] Zezheng Wang, Zitong Yu, Xun Wang, Yunxiao Qin, Jiahong
Li, Chenxu Zhao, Xin Liu, and Zhen Lei. Consistency regu-
larization for deep face anti-spoofing. IEEE Transactions on
Information Forensics and Security, 18:1127–1140, 2023. 2

[28] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In 2010 IEEE computer so-
ciety conference on computer vision and pattern recognition,
pages 3485–3492. IEEE, 2010. 1

[29] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Learning to generate novel domains for domain gen-
eralization. In European Conference on Computer Vision,
pages 561–578. Springer, 2020. 1

