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We provide additional material to supplement our work.
Section 1 describes additional experimental results that
cover Digits-DG and VLCS benchmarks, as well as applica-
bility of our approach to different backbones. In Section 2
we address two key aspects. Firtly, we demonstrate that
by iteratively dropping the most predictive parameters, the
model is forced to learn less dominant features. Secondly,
we extend the scope of the ablation study to encompass the
intermediate dropout masks. We report on the impact of
ImageNet pre-training in Section 3 and provide details on
baseline implementation in Section 4. Lastly, code listings
are appended in Section 5.

1. Additional experiments
Digits-DG. We expand the experimental validation of our
method over Digits-DG [29] dataset which covers digit
images with various styles, colors and backgrounds com-
ing from MNIST [19], MNIST-M [10], SVHN [22] and
SYN [10] datasets. Table 1 shows that our method obtains
best performance averaged across all 4 domains.

Table 1: Classification accuracy (%) on the Digits-DG
dataset [29]. The bold numbers indicate the best perfor-
mance averaged across all test domains.

Digits-DG MNIST MNIST-M USPS SVHN Synthetic Avg ↑
Baseline 86.15 74.44 90.07 81.29 94.46 85.28

DSBN [3] 87.01 71.20 91.18 78.23 94.30 84.38
SN [21] 89.28 78.40 88.54 79.12 95.66 86.20

DSON [23] 89.62 79.00 91.63 81.02 95.34 87.32
Ours 96.97 84.38 90.82 80.11 96.21 89.69

VLCS. We conclude our classification experiments with
VLCS dataset [24] which spans 10 729 images grouped into
5 categories. Each image belongs to one of the following

*Work done while Xiang was at NEC Labs America

domains: SUN09 [28], LabelMe [25], PASCAL VOC 2007
[8], Caltech-101 [9]. Results presented in Table 2 further
demonstrate the generalization capability of our method.

Table 2: Classification accuracy (%) on the VLCS
dataset [24]. The bold numbers indicate the best perfor-
mance averaged across all test domains.

VLCS Caltech LabelMe VOC2007 SUN09 Avg ↑
Baseline 96.25 59.72 70.58 64.51 72.76
JiGen [2] 96.93 60.90 70.62 64.30 73.19
RSC [14] 97.61 61.86 73.93 68.32 75.43

Ours 97.49 65.47 73.82 68.43 76.30

DNNs. We show the versatility of our approach by applying
it to various backbones. Table 3 shows that the performance
gap increases with the depth of the backbones: growing
from 0.89% on AlexNet [18] to 2.25% on ResNet50 [13].

Table 3: Classification accuracy (%) on PACS [20] using
various backbones. The bold numbers indicate the best per-
formance averaged across all test domains.

PACS artpaint cartoon sketch photo Avg ↑

A
le

xN
et MASF [7] 70.35 72.46 67.33 90.68 75.21

DMG [4] 64.65 69.88 71.42 87.31 73.32
RSC [14] 70.93 71.62 71.35 90.23 76.03

Ours 72.25 73.23 70.69 91.52 76.92

R
es

N
et

18 MASF [7] 80.29 77.17 71.68 94.99 81.03
DMG [4] 76.90 80.38 75.21 93.35 81.46
RSC [14] 80.73 79.22 81.48 94.16 83.90

Ours 83.64 80.03 84.37 95.32 85.84

R
es

N
et

50 MASF [7] 82.89 80.49 72.29 95.01 82.67
DMG [4] 82.57 78.11 78.32 94.49 83.37

ITL-Net [11] 87.1 83.3 96.1 79.3 86.4
EoA [1] 90.5 83.4 98.0 82.5 88.6
DNA [5] 89.8 83.4 97.7 82.6 88.4

Style Neophile [16] 90.35 84.20 96.73 85.18 89.11
RSC [14] 84.08 84.59 83.76 95.56 86.99

Ours 87.93 85.53 86.68 96.83 89.24
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2. Additional analysis
Less dominant features assumption. Similar to the RSC
algorithm, our method learns more generalizable features
by muting the feature representations associated with the
highest loss gradient, such that the network is forced to pre-
dict the labels through alternative features. Therefore, it
is worthwhile to study loss difference at every iteration of
the training algorithm. Loss difference can be expressed as
Γ(θ̂(t)) = |h(θ̂(t), zt) − h(θ̂(t), z̃t)|, where θ̂ denotes the
estimated parameters of the model at time t, z̃t are masked
features z and h denotes the task component of the back-
bone f defined as h(θ̂, z) =

∑
(z,y) l(f(z; θ̂); y) with y be-

ing labels and l a generic loss function. We show that Γ
is decreasing over training time of 30 epochs in Figure 1.
Notice, that Γ is the empirical approximation of ξ, a key
component in the generalization bound (see Corollary 1 in
the RSC paper for detailed discussion) and therefore lower
Γ implies tighter bound and better generalization.
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Figure 1: Temporal evolution of the loss difference Γ(θ(t))
on PACS dataset.

Ablation of M (1) and M (2). We demonstrate the impact of
the intermediate masks M (1) and M (2) of our approach in
Table 4. If M (1) or M (2) is set to 0, all ResNet blocks will
be zeroed and the network is unable to learn any relevant
features. If we set M (1) to 1, the regularization process is
guided solely by a Bernoulli distribution, resulting in a sim-
ilar performance to the baseline. By setting M (2) to 1, our
approach collapses to DB+gsnr , where the dropout ratios
have to be tuned manually. With M (1) and M (2) both set
to 1, no regularization occurs and the performance becomes
similar to baseline.

3. Impact of ImageNet Pre-training
Following common practice, we pre-train our classifica-

tion model on ImageNet [6]. For completeness, we also

Table 4: Ablation study: impact of the intermediate masks
on the proposed Meta-GSNR approach. For simplicity, we
denote 0 and 1 as all-zeros and all-ones matrices.

PACS artpaint cartoon sketch photo Avg ↑
Meta-GSNR w/M (1) ·M (2) = 0 10.88 21.84 04.42 16.64 13.44

Meta-GSNR w/M (1) = 1 78.12 76.57 75.16 94.49 81.08
Meta-GSNR w/(M (2) = 1 80.85 80.73 81.85 94.79 84.55

Meta-GSNR w/M (1) = M (2) = 1 77.49 77.21 72.67 92.45 79.95
Meta-GSNR 83.64 80.03 84.37 95.32 85.84

report accuracies obtained on PACS dataset using models
trained from scratch in Table 5. Our approach outperforms
RSC in both settings by approximately 2%. Similar to [17],
we observe that a pre-trained baseline outperforms other do-
main generalization methods that are trained from scratch,
indicating that both settings should be reported in future re-
search.

Table 5: Classification accuracy (%) on the PACS dataset
[20]. The bold numbers indicate the best performance in
each setting.

PACS artpaint cartoon sketch photo Avg ↑
Pre-trained on ImageNet

Baseline 78.63 75.27 68.72 96.08 79.68
RSC [14] 80.73 79.22 81.48 94.16 83.90

Ours 83.64 80.03 84.37 95.32 85.84
Trained from scratch

Baseline 52.19 65.01 68.23 75.38 65.20
RSC [14] 56.49 65.74 80.05 68.64 67.72

Ours 60.55 69.50 72.74 78.14 70.23

4. Reproduced Results
For fair comparison, in the experimental section of the

main paper, we have reported the HTER and AUC metrics
of SSDG [15], SSAN [26], and EPCR [27] methods obtained
by running the code from the official repositories 1 2 3 .
Similarly, we used the official code repository of RSC [14]
4 to report baseline, RSC, and ours.

5. Code Listings
Listing 1 illustrates how to obtain gradients in a typical

forward pass, and Listing 2 shows how our dropout proce-
dure can be applied. Our approach is based on TorchVision
5 implementation of DropBlock [12].

1https://github.com/taylover-pei/SSDG-CVPR2020
2https://github.com/wangzhuo2019/SSAN
3https://github.com/clks-wzz/EPCR
4https://github.com/DeLightCMU/RSC
5https://pytorch.org/vision/stable/index.html



1 # forward pass to obtain gradients
2 class_logit, ResNetBlocks = model(images, labels, grads=None)
3 loss = criterion(class_logit, labels)
4 grads = [ torch.autograd.grad(loss, ResNetBlock)[0] for ResNetBlock in ResNetBlocks]
5 # forward pass to apply GSNR-guided dropout
6 class_logit, _ = model(data, labels, grads)
7 loss = criterion(class_logit, labels)
8 loss.backward()
9 optimizer.step()

Listing 1: Obtaining gradients in a forward pass

1 def drop_block2d_gsnr(
2 input: Tensor, grads: Tensor, p: float, p_gsnr: float, block_size: int,
3 inplace: bool = False, eps: float = 1e-06, training: bool = True
4 ) -> Tensor:
5 """
6 Args:
7 input (Tensor[N, C, H, W]): The input tensor or 4-dimensions with the first one
8 being its batch i.e. a batch with ``N`` rows.
9 grads (Tensor[N, C, H, W]): Gradients of the loss function with respect to

10 the input tensor.
11 p (float): Probability of an element to be dropped.
12 p_gsnr (float): Probability of dropout to be applied.
13 block_size (int): Size of the block to drop.
14 inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``.
15 eps (float): A value added to the denominator for numerical stability. Default: 1e-6.
16 training (bool): apply dropblock if is ``True``. Default: ``True``.
17

18 Returns:
19 Tensor[N, C, H, W]: The randomly zeroed tensor after dropblock.
20 """
21 def calc_gsnr(grads, eps=10**-7):
22 ''' computes batch-wise gsnr '''
23 grads_mean = grads.reshape(grads.shape[0], -1).mean(dim=0)
24 grads_var = grads.reshape(grads.shape[0], -1).var(dim=0)
25 gsnr = grads_mean**2/(grads_var+eps)
26 return gsnr
27

28 if p < 0.0 or p > 1.0:
29 raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.")
30 if input.ndim != 4:
31 raise ValueError(f"input should be 4 dimensional. Got {input.ndim} dimensions.")
32 if not training or p == 0.0:
33 return input
34

35 assert grads.shape == input.shape
36 N, C, H, W = input.size()
37 block_size = min(block_size, W, H)
38

39 gamma = (p * H * W) / ((block_size**2) * ((H - block_size + 1) * (W - block_size + 1)))
40 gsnr = calc_gsnr(grads).reshape(grads.shape[1:]).unsqueeze(dim=0)
41 thresh_idx = C*(H - block_size + 1) * (W - block_size + 1) * gamma * block_size**2
42 thresh_idx = int(thresh_idx)
43 thresh_val = torch.sort(gsnr.flatten(), descending=True)[0][thresh_idx]
44 window_size = H - block_size + 1
45 noise = gsnr[:,:,block_size-1:block_size-1+window_size,block_size-1:block_size-1+window_size]
46 noise = (noise >= thresh_val)*1.0
47 assert noise.shape == (N//N, C, H - block_size + 1, W - block_size + 1)
48

49 noise_gsnr = torch.empty((1, C, H - block_size + 1, W - block_size + 1),
50 dtype=input.dtype, device=input.device)
51 noise_gsnr.bernoulli_(p_gsnr)
52 noise = noise * noise_gsnr
53

54 noise = F.pad(noise, [block_size // 2] * 4, value=0)
55 noise = F.max_pool2d(noise, stride=(1, 1), kernel_size=(block_size, block_size),
56 padding=block_size // 2)
57 noise = 1 - noise # now high gsnr values are zeroed
58 normalize_scale = noise.numel() / (eps + noise.sum())
59 if inplace:
60 input.mul_(noise).mul_(normalize_scale)
61 else:
62 input = input * noise * normalize_scale
63 return input

Listing 2: GSNR-guided dropout strategy
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