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1. Additional Experiments.
1.1. Ablation Study on Semantic Labels.

In Table.1, we study the effect of aggregating GT seman-
tic labels into our input point cloud datum, as an input fea-
ture to PointNet. We found including semantic labels only
marginally improves the AP when learning with all data, but
their inclusion is crucial in learning semantic purposes.

w/ Semantic Label | w/o Semantic Label
Loc. AP View AP | Loc. AP View AP
Bed 68.50 55.94 68.91 38.08
Toilet | 92.78 83.57 70.20 44.47
All 86.37 56.70 84.67 55.08

Split

Table 1: Ablation Study on Semantic Labels. We study
the effect of using GT semantic labels as point cloud input
features.

1.2. KITTI Dataset.

We additionally test our method on the KITTI odometry
dataset [2], where the environment and viewpoint pose have
very different distribution than the indoor ScanNet dataset.
We train on sequences 00, 02 and test on sequence 05. We
fuse each lidar scan with adjacent scans to fill the holes and
down sample the points using voxel filter as our point cloud
input. Note although KITTI has less variation at the pitch
and roll axes, we still treat it as 6DoF viewpoint learning for
generality. Due to the lack of semantic label and mesh, we
only use [4] with depth and point saliency statistics as base-
line. The GT H.R.P. baseline is also attached as reference
for the environment scale.

KITTI Results. In Table.2, we report location and view-
point selection precision similar to the ScanNet setup. For
the baseline method, we additionally restrict its motion
model to 4DoF using GT average height, pitch and roll.
Both methods recover most locations and viewpoints on the
KITTTI dataset, while our method shows higher precision.
The viewpoint selection precision is usually lower since
it is difficult to determine the driving direction (i.e. for-

Location (<2m) View (<2m & <30°) ‘
Method Precision Recall AP Precision  Recall AP
GTHR.P. - - 4.70 - 0.88
Adrian et al. [4] 37.15 96.99 38.12 17.73 84.34  20.04
+ 4DoF 69.30 9524  71.23 35.44 89.27 37.29
Ours 76.42 98.08 78.52 43.08 96.13 45.74

Table 2: Viewpoint selection precision on KITTIL.

Figure 1: Results on KITTI. We compose results on multi-
ple lidar segments to a street BEV. The selected viewpoints
are visualized as red lines with same orientation. The map
color indicates the changes in y-axis (height).

ward/backward). In Fig.1, we visualize the selected view-
points using lines indicating oriented camera pose by com-
posing all scans together. The resulting viewpoints nicely
follow the driving direction of the road.

1.3. Additional results on ScanNet.

In Fig.4,5,6, we show additional results where the three
rows from top to bottom are GT, ours and Kyle ez al. [3].
The visualization of location score is same to the main
paper. The right grid of viewpoint images are randomly
selected viewpoint images of each method at the optimal
threshold. The viewpoint images selected by our method
exhibit good diversity and realism.

1.4. PR curve.

In Fig.2, we report the PR curve and performances over
different thresholds on ScanNet. We evenly sample 100
thresholds and estimate precision/recall for each scene. The
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Figure 2: Detailed Performance on ScanNet.
final reported precision/recall is the average over all scenes.

2. Supportive Details.
2.1. Hyper-parameters.

In Table.3, we detail the default value of our hyper-
parameters. The hyper-parameters are commonly applied to
both ScanNet and KITTT datasets except for the maximum
distance Ypqz-

Symbol Value Eq.Ref Description
P 4096 Eq.(6) number of input points
D 128 Eq.(7,8,9) descriptor dimension
H, 8 Eq.(9) length field (fourier series) degree
Hy 2 Eq.(7) optic-ray direction field (S?) degree
H; 2 Eq.(8) hyper-ray direction field (S%) degree
Vs 64 Eq.(12) Voronoi 2-sphere resolution
Vs 512 Eq.(18) Voronoi 3-sphere resolution
A 0.5 Eq.9) view cropping visibility
s 20° Eq.(24) virtual roll-axis FoV
Ymax 10 meters Eq.(9) maximum distance for ScanNet
Ymaz | 80 meters Eq.(9) maximum distance for KITTI

Table 3: Hyper-parameter Table.

2.2. Baseline implementation details.

We implement Kyle et al. [3] and Adrian et al. [4] as our
baselines. Our implementation only replicates their method
for scoring a viewpoint, and integrates their scoring model
under the same viewpoint sampling and selection model as
our method. Since both baselines require viewpoint images
as input, we first render and store all required viewpoints
images on disk. In order to have same sampling density as
our method (0.2m grid with 4096 rotations per location),
the number of viewpoint hypotheses easily exceeds 100M
images per scene, which is not a reasonable amount to ren-
der and store. To avoid this, we cache panoramas at every
location and crop the panoramas into perspective images to
create viewpoint images during inference time. The ren-
dering takes a week using Open3D [5] on a 32 core CPU,
while the inference of both methods on ScanNet takes 1-2
days with pytorch GPU acceleration. The images we render
for both baseline methods are GT semantic label images,
since both methods only model the semantics and discard
RGB color. For Kyle et al. [3], we build a 48 x 64 x 32
(height, width, depth) histogram for each semantic class in
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Figure 3: Heat-Volume and Clipping. We clip the heat-
volume to the height of maximal accumulated score for bet-
ter visualization.

ScanNet (40 for total) during the training. During the in-
ference, we score the viewpoint image by integrating each
pixel’s corresponding bin value. For Adrian et al. [4], we
build histograms for depth statistics, semantic statistics and
mesh saliency, where we rate viewpoint images using his-
tograms during the inference. Due to the different seman-
tic statistics for each scene, we normalize the score of both
baselines for each scene separately. We sum up all view-
points of the same location as their location score. Since
Adrian et al. [4] does not analyze the structure of pixels
on the image, it cannot distinguish the roll of a viewpoint.
Hence, the “+fix gravity” in our main paper Table.1 setup
manually fixes this issue by assuming all viewpoints align
to a known gravity direction. Kyle et al. [3] models the im-
age pixel structure using a pixel-wise histograms, hence it
roughly captures correct roll angle as visualized in main pa-
per Fig.5. However, the histogram shows a certain amount
of outliers with incorrect roll angle, indicating the difficulty
to recover the correct camera pose from image capture.

2.3. Regarding the heat-volume visualization.

It is worth noting that the heat-map in our location score
visualizations are all 3D heat-volumes. The heat-volumes
are built by linearly interpolating the score of each loca-
tion. However, directly rendering the solid volumes will
prevent its internal structure from being visualized as shown
in Fig.3. Hence, we clip the top of the volume to reveal its
interior, where the volume is clipped to the height of maxi-
mal accumulated score.

2.4. Harmonics Polynomial Lookup Table.

For convenience, we attach both 2-/3-sphere harmonics
polynomials up to 2 degrees in Table.4. They are computed
using the software provided by [1]. The tables take unit
vector input [, T2, x3] for 2-sphere and [x1, z2, 23, x4] for
3-sphere in Cartesian coordinate.



1 m expression k|1| m expression
0(0} 0 |1
0 0 1 0| 0 | 2z
-1 \/5332 1 =1 | 2z3
1 0 | 2z
1 0 \/gl’g 1 21:1
1 | V3zy 0] 0 [1-4a3
/ —1 | 2v6za23
—2 152172 1] 0 | V21— a2 —3a2)
-1 \V4 15I2$3 1| 2v6x9xy
V5 2 2 —2 | 2v/6z314
210 | 20 -323) 1| 2B
1 Vv 15z 23 200 \[3(71 — a3 — a3 —22%)
/15 2 ) 1 26z 23
2 5 (1 — @3 —2a3) 2 | 2612y

(a) 2-sphere (b) 3-sphere

Table 4: Spherical Harmonics Lookup Tables.
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Figure 4: Results on ScanNet (Group 1). The left 3D figures visualize the location score using 3D heat-volumes clipped to
the height of maximal accumulated score. The right pictures are randomly picked viewpoints at an optimal threshold gives
best F1 score. Each group of rendered viewpoint pictures corresponds to a different method. From top to bottom is GT, ours
and Kyle et al. [3].
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Figure 5: Results on ScanNet (Group 2). The left 3D figures visualize the location score using 3D heat-volumes clipped to
the height of maximal accumulated score. The right pictures are randomly picked viewpoints at an optimal threshold gives
best F1 score. Each group of rendered viewpoint pictures corresponds to a different method. From top to bottom is GT, ours
and Kyle et al. [3].
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Figure 6: Results on ScanNet (Group 3). The left 3D figures visualize the location score using 3D heat-volumes clipped to
the height of maximal accumulated score. The right pictures are randomly picked viewpoints at an optimal threshold gives
best F1 score. Each group of rendered viewpoint pictures corresponds to a different method. From top to bottom is GT, ours
and Kyle et al. [3].



