
—Supplementary Material—
MATE: Masked Autoencoders are Online 3D Test-Time Learners

M. Jehanzeb Mirza†1,2 Inkyu Shin†3 Wei Lin†1 Andreas Schriebl1 Kunyang Sun4

Jaesung Choe3 Mateusz Kozinski1 Horst Possegger1 In So Kweon3 Kuk-Jin Yoon3

Horst Bischof1,2

1Institute for Computer Graphics and Vision, Graz University of Technology, Austria.
2Christian Doppler Laboratory for Embedded Machine Learning.

3Korea Advanced Institute of Science and Technology (KAIST), South Korea.
4Southeast University, China.

In the following, we present the detailed Algorithm for
MATE (Section 1), provide specifics for all the distribution
shifts (Section 2), present experiments on ModelNet-40C
achieving real-time test-time training (TTT) (Section 3) and
show correlation between TTT and the auxiliary task of
MAE reconstruction (Section 4).

1. Algorithm
In Algorithm. 1, we provide the detailed algorithm for

our MATE, which consists of three phases: Joint training,
Test-time training, and Online evaluation.

2. Details about Distribution Shifts
We use the corruption benchmark [4] to introduce 15

different types of commonly occurring distribution shifts on
the test sets of the point cloud datasets we use for evaluation
in our main manuscript. A description of these distribution
shifts is provided as follows:

- Uniform noise: Random noise is added to each point
in a point cloud, where the amount of noise is based on a
uniform distribution and lie within a range of ±0.05.

- Gaussian noise: Points are randomly perturbed and the
amount of noise is based on a Gaussian (normal) distribution
with values in range of ±0.03.

- Background noise: Randomly add (Number of Points
20 )

points with values in the range of ±1 in the bounding box of
the point cloud.

- Impulse noise: Add a value in the range of ±0.1 to a
subset of the total number of points in the pointcloud.

- Upsampling: Additional points are added by duplicat-
ing the existing points in a point cloud.

- RBF: The point clouds are deformed based on the Ra-
dial Basis Function [1].

Stride - 1

Stride - 5

Stride - 25
Stride - 50

Stride - 100

Figure 1: MATE can achieve real-time adaptation perfor-
mance by only sacrificing some percent-points. Here, we
report the Mean Top-1 Accuracy (%) over the 15 corruptions
in the ModelNet-40C dataset for different adaptation strides.
Strides represent the number of samples after which an adap-
tation step is performed.

- Inverse_RBF: To generate this shift, the Radial Basis
Function and the resulting splines are inverted.

- Local_Density_Decrease: To generate this distribution
shift, 5 local cluster centers and their 100 closest neighbors
are chosen. Further, their point density is decreased by
deleting 3

4 of the points inside the clusters.
- Local_Density_Increase: Choose 5 local cluster centers

with 100 closest neighbors. Then, keep these clusters, but
randomly sample the rest of the pointcloud again with the
original number of points. This results in double the density
in the clusters, in comparison to the rest of the point cloud.

- Shear: Randomly compress and stretch the point cloud
on the xy-plane. Here, the points get multiplied by values in



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Gradient Steps

40

60

80

A
cc

u
ra

cy
(%

)

Rotation

Cutout

Gaussian

Uniform

Impulse

Density

Density Inc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Gradient Steps

5

10

15

20

L
os

s
(%

)

Rotation

Cutout

Gaussian

Uniform

Impulse

Density

Density Inc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Gradient Steps

20

40

60

80

A
cc

u
ra

cy
(%

)

Background

Upsampling

Distortion-Rbf

Distortion-Inv

Shear

Distortion

Occlusion

Lidar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Gradient Steps

20

40

60

L
os

s
(%

)

Background

Upsampling

Distortion-Rbf

Distortion-Inv

Shear

Distortion

Occlusion

Lidar

Figure 2: Accuracy (Top) and Reconstruction Loss (Bottom) for all corruption in the ModelNet-40C at each adaptation step
for MATE-Standard. To avoid clutter, we split the different corruptions into two plots (left and right).

range of ±0.25 for each dimension.
- Rotation: Rotate all three spatial dimensions of a point

cloud by a random angle in range of ±15◦.
- Cutout: To simulate cutout, generate 5 local clusters

with 100 closest neighbors and remove these clusters from
the original point cloud.

- FFD: For this distribution shift, the Free-Form Defor-
mation (FFD) [3] is used. The point cloud is enclosed in a
box consisting of splines which are defined by control points.
The control points are shifted to deform the point cloud.
A total of 125 control points are used with a deformation
distance in a range of ±0.5.

- Occlusion: Occluded points are deleted by using ray-
tracing from a random camera position. For this operation,
precomputed meshes [6] are used.

- LiDAR: Point clouds are simulated as if they are gener-
ated from a LiDAR sensor. In addition to occlusion, inaccu-
racies based on reflections and noise are added.

3. Real-time Test-time Training

In the main manuscript (Figure 3), we provide results for
MATE-Online while adapting sparingly to the test samples
in ShapeNet-C dataset. We see that, while adapting spar-
ingly on the test data, i.e. only back-propagating gradients
after a certain number of samples (stride), our MATE can
still achieve strong performance gains and can even match
the real-time FPS (30), with only a minimum penalty on
accuracy. Here, in Figure 1, we provide the results with dif-
ferent strides for the ModelNet-40C dataset, which is ∼ 4×
smaller than the ShapeNet-C dataset. While adapting spar-

ingly, we see that, similar to the results on the large-scale
ShapeNet-C, our MATE can also achieve close to real-time
performance by dropping only a few percent-points as com-
pared to adapting on each sample. For example, with a stride
of 5 (adapting on every 5-th sample), our MATE drops only
∼ 3 percent-points as compared to the results with stride-1
(adapting on each incoming sample), while obtaining an FPS
of 21.

4. Classification and Reconstruction

At test-time, MATE adapts to each out-of-distribution
(OOD) test sample by using the self-supervised reconstruc-
tion task as an auxiliary objective, leveraging masked autoen-
coders [2]. As each OOD sample is encountered, the network
is adapted by the auxiliary self-supervised loss. This loss is
an l2 Chamfer distance between the reconstructed masked
tokens and the corresponding ground truth tokens from the
original OOD test sample. After adapting the network by
back-propagating the gradients obtained from the auxiliary
loss, the OOD sample is evaluated. In the main manuscript,
we see that our test-time training methodology achieves
strong performance gains on a variety of datasets for object
classification in 3D point clouds. Naturally, the question
arises – ‘How a self-supervised task, i.e. reconstruction task,
can help to adapt the network for a seemingly unrelated task,
like object classification?’ Through our experiments, we find
that there is a correlation between the reconstruction task and
the classification task and that is the reason for the improve-
ment in classification accuracy by simply reconstructing the
corrupted (OOD) test sample at test-time. We find this cor-



Distortion

Background

Cutout

Density

Ground Truth Masked Input Reconstruction

Figure 3: Reconstruction results for MATE-Standard at the 20-th gradient step for adaptation at test-time. We plot the
out-of-distribution test sample for adaptation (left), 10% input visible tokens (center) and the corresponding reconstruction
output (right) for four corruptions in the ModelNet-40C dataset.

relation empirically through two procedures, detailed in the
following.

4.1. Loss and Accuracy

In the main manuscript, we test our MATE in two test-
time training variants, described in Section 3.5, here we
again provide a brief description in the interest of keeping

the reading flow:

MATE-Standard assumes access to a single sample at
test-time for adaptation. In order to adapt the network on
this single sample, we take multiple gradient steps (i.e. 20)
for test-time training. After adaptation on each sample, the
network weights are re-initialized for adaptation on the next



Algorithm 1: Algorithm for MATE
Input: (Training data S = {(X ,Y)}, Single

out-of-distribution point-cloud X̃ )
1 begin
2 Define the network with encoder E, decoder D,

prediction head P , classifier head C
3 Define the masking ratio m, batch size b, stride s

and gradient steps k
4 # Joint Training.
5 for multiple epochs do
6 X v = point-masking(X ,m)
7 L = CE(C ◦ E(X v),Y) +

CD(P ◦D ◦ E(X v),X ) (Eq. (2, 3))
8 L.backward()
9 optimizer.step()

10 # Test-Time Training & Online Evaluation.
11 for idx, X̃ in loader do
12 if idx % s == 0 then
13 LTTT = 0
14 for k iterations do
15 X̃ v = [point-masking(X̃ ,m) for _ in

range(b)]
16 LTTT += CD(P ◦D ◦ E(X̃ v), X̃ )

(Eq. (4))
17 L = LTTT .mean()
18 L.backward()
19 optimizer.step()

20 Evaluate C ◦ E(X̃ v)

sample.

MATE-Online assumes access to a stream of data for
adaptation and the network updates are accumulated after
adaptation on each sample in the stream. For this adaptation
variant, we only take a single gradient step on each OOD
test sample.

In Figure 2, we plot the Top-1 Accuracy on ModelNet-
40C and the corresponding reconstruction loss at each gradi-
ent step for MATE-Standard. Please note that these results
are plotted by taking the average of the accuracy over all the
samples in the test set of ModelNet-40C at each gradient
step. From the results it is evident that as the reconstruction
loss decreases after each gradient step, the corresponding
accuracy increases. This shows that as the model becomes
better at reconstructing the OOD test sample, the classifica-
tion performance is influenced in a positive way. We also
see that there is a spike in the reconstruction loss during the
initial update step. We hypothesize that this is because of the
sudden distribution shift which is encountered at test-time,

since the model is initially trained on clean point clouds.
However, with more adaptation steps for test-time training,
it slowly gets better at reconstructing the OOD sample.

Furthermore, an interesting result is that of the Back-
ground corruption. In the main manuscript, while listing
the results for ModelNet-C (Section 4.4) we found that for
the background corruption TTT-Rot [5] fares better than our
MATE. From Figure 2, we see that for Background corrup-
tion the reconstruction loss is highest among all the other
corruptions, that can be one of the reasons why MATE can-
not perform well on this corruption. This also gives us an
indication of the correlation between the reconstruction and
the classification loss. To further investigate the background
corruption and find more answers behind correlation of the
two tasks, we visualize the reconstruction results next.

4.2. Reconstruction Results

We further analyzed the reconstruction results for differ-
ent corruption types to get a deeper insight in to the correla-
tion of the MAE reconstruction and the classification task.
We find that for TTT with MATE-Standard, after 20 gradient
steps, the reconstruction for the Background corruption is
the worst as compared to reconstruction of other corruption
types. We visualize these results for a few corruptions in the
ModelNet-40C dataset for the Airplane class in Figure 3.
Reconstructions from the remaining corruptions also follow
a similar pattern. Since MATE does not perform optimally
for the Background corruption, this gives us an indication of
the correlation between the auxiliary self-supervised recon-
struction task and the downstream classification task. To con-
clude, our results show that if the auxiliary self-supervised
reconstruction task is able to reconstruct the input corrup-
tion type optimally, MATE shows strong performance gains,
which is an indication that these two tasks are correlated
with each other.

References
[1] Davide Forti and Gianluigi Rozza. Efficient geometrical

parametrisation techniques of interfaces for reduced-order mod-
elling: application to fluid–structure interaction coupling prob-
lems. International Journal of Computational Fluid Dynamics,
2014.

[2] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked Autoencoders for Point
Cloud Self-supervised Learning. In Proc. ECCV, 2022.

[3] Thomas W. Sederberg and Scott R. Parry. Free-Form Deforma-
tion of Solid Geometric Models. In Proc. SIGGRAPH, 1986.

[4] Jiachen Sun, Qingzhao Zhang, Bhavya Kailkhura, Zhiding Yu,
Chaowei Xiao, and Z Morley Mao. Benchmarking Robustness
of 3D Point Cloud Recognition Against Common Corruptions.
In Proc. ICLR, 2022.

[5] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-Time Training with Self-



Supervision for Generalization under Distribution Shifts. In
Proc. ICML, 2020.

[6] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D:
A Modern Library for 3D Data Processing. arXiv preprint
arXiv:1801.09847, 2018.


