
A. Summary

We provide additional details about the comparative
baselines, against which we benchmark, in Appendix B.
Further exposition about our disparity smoothing technique
(see § 4.1) and edge island filtering method (see § 4.2.3) is
given in Appendix C and Appendix D, respectively. Ad-
ditional visualizations are shown in Appendix E, includ-
ing methodological illustrations (§ E.1) and qualitative ex-
amples (§ E.2 and § E.3). Technical implementation de-
tails, such as hyper-parameter values, are discussed in Ap-
pendix F. Finally, further explanation about our choice of
evaluation metrics is given in Appendix G. Please also view
our supplementary website for additional visualizations, in-
cluding videos.

B. Baseline Details

B.1. Masked-NeRF + DreamFusion

For the Masked-NeRF + DreamFusion baseline, we use
the same per-scene text prompts we used to generate our
reference views, to guide the generation of the masked re-
gion using the score distillation sampling (SDS) [49] loss.
We found that gradually and uniformly decreasing the max-
imum noise steps, tmax, during fitting, until it equals the
minimum noise steps, tmin, at the last iteration, improves
quality. We suggest this is because, at first, higher noise
levels are effective in the generation of global scene struc-
ture, and later, lower noise-levels enable fixing details. Due
to the unavailability of DreamFusion’s code and their un-
derlying diffusion model, Imagen [57], we used stable-
dreamfusion [63], with Stable-Diffusion [55] as the under-
lying diffusion model.

B.2. NeRF-In

As in prior work [42], we used our own implementation
of NeRF-In [34], due to the unavailability of official code.
Besides the primary distinctions with our method, such as
the pixelwise loss, the remaining architecture (e.g., the use
of NGP [44]) is identical to our method. Note that this in-
duces minor implementation differences from the concur-
rent technical report of NeRF-In, such as the choice of pre-
trained 2D inpainting model.

Since NeRF-In considers the effect of varying numbers
of reference images, we considered two variants of NeRF-
In: using multiple reference images (i.e., inpainting all im-
ages, as in SPIn-NeRF [42] and using a single one. By de-
fault, we utilize the latter method, as it obtains better overall
performance (in both our experiments and those of NeRF-In
itself), but report the performance of both models in Table 1.

B.3. Object-NeRF

Following the Object-NeRF [78] model, we can remove
objects by simply ignoring the contribution of masked 3D

points in the volume rendering process (equivalent to setting
σi = 0 in masked regions). This is possible here due to the
assumed availability of a 3D mask. Note that we are only
utilizing this particular approach to object removal, not the
entire Object-NeRF algorithm (i.e., the construction of the
NeRF itself is identical to our method).

C. Disparity Smoothing Details

After performing the initial depth alignment (as dis-
cussed in § 4.1), we further reduce the misalignments
around the edges of the reference mask, Mr, via smoothing
the aligned reference disparity, Dr. More specifically, to
improve the visual continuity of the reference-view bound-
ary between the aligned masked disparity, Dr ! Mr, and
the unmasked rendered NeRF disparity, D̂r ! (1−Mr), we
smooth Dr to get the edge-smoothed disparity, Dsmooth

r :

Dsmooth
r = Dr +Dcorrection, (11)

where Dcorrection is the smoothed disparity correction ob-
tained by minimizing the following objective:

∥∥(D̂r −Dsmooth
r )! (1−Mr)

∥∥2
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+γsmooth

∑

p∈Ir

∑

p′∈N (p)

(
Dcorrection(p)−Dcorrection(p′)

)2
,

(12)

where for a pixel, p, N (p) is the set of four neighbouring
pixels, and γsmooth is the weight of the smoothness loss. The
first term in Eq. 12 fits the unmasked pixels of Dcorrection to
the difference of the rendered disparity, D̂r, and the aligned
disparity, Dr. The second term is the smoothness penalty,
to smoothly propagate the values of Dcorrection from outside
the mask to inside.

D. Edge Island Filtering Details

When propagating appearance information into the
masked area, in order to construct view-dependent effects
for supervision in non-reference views, recall that the bilat-
eral solver is sometimes unable to provide sensible colour
values in some areas of the masked region, due to the pres-
ence of “edge islands” (see § 4.2.3). Such areas are isolated
patches in bilateral space, for which the bilateral solver can-
not effectively produce colour values (see Fig. 11 for in-
stances of this). In this section, we provide additional de-
tails on our filtering algorithm for removing these invalid
values, so that they are not used for supervision.

First, we dilate the mask, Mr, with kernel size 5 to get
the dilated mask, M dilated

r . Then, for each target view, t,
we find the maximum absolute value of the residual inside
M dilated

r and outside Mr:

resmax
t = max

(
abs(rest)!

(
M dilated

r ∩ (1−Mr)
))

, (13)



Input Views

Input Masks

Reference View,

Edge Island Mask,

Figure 11: Examples of our “edge island” detection method,
designed to filter out erroneous outputs from the bilateral
filter (detailed in Appendix D). Left column: input views
and masks for the scene. Middle column: view-substituted
renders after bilateral inpainting (see also § 4.2), which has
produced poor quality colours in the edge island formed
by the washtub. Right column: (top) the reference view
and (bottom) the detected mask, used to filter out rays that
would potentially damage the output.

Figure 12: The additional matrices used for tighter align-
ment around the edges when aligning disparities (see § 4.1).
In our experiments, scale and offset were insufficient to
have the depths completely aligned around the boundaries
of the mask. These two matrices allow the predicted depth
to be tilted along the x and y axes.

where abs(·) is the element-wise absolute value. We denote
the mask for the pixels in rest ! Mr with absolute values
higher than resmax

t × cei as Mei
r,t, where cei ≥ 1 is the filter-

ing threshold. The mask of the edge island is then obtained
as the union of the mask of all of the out-of-distribution val-
ues among all of the target views:

M ei
r =

⋃

t

Mei
r,t. (14)

Fig. 11 shows an example of the effects of an edge island
inside the masked region (the orange pan) on the target
colours of two example target views, Îr,t1 and Îr,t2 . As
shown in the figure, the bilateral solver has failed to predict
correct view-dependent colours for the pan, resulting in ex-
treme behaviour inside the pan. Our proposed edge island
filtering successfully detects and removes the outlier values
via the edge island mask, M ei

r .

3IBRNet images in Fig. 13,14 by Wang et al. available in IBRNet [72]

E. Additional Visualizations

E.1. Methodological Illustrations

Depth Alignment Tilt Matrices. In Fig. 12, we vi-
sualize the matrices utilized for tighter depth alignment
(see § 4.1). These matrices allow the optimization to tilt

the depths, in addition to scaling and shifting them.

Overview. We provide an expanded methodological il-
lustration in Fig. 13, covering our approach to providing
geometric supervision in the masked region (§ 4.1) and han-
dling the construction of view-dependent effects in non-
reference views (§ 4.2); see also Figs. 3, 4, and 5.

View-Substituted Images. We also provide some exam-
ples of view-substituted images (see § 4.2.1) in Fig. 14. No-
tice that the view-substituted images have identical camera
viewpoint (and thus image structure) as the reference image,
but different colours, corresponding to the view-dependent
visual differences across the non-reference images.

E.2. Additional Ablation Examples

Masked Depth and Disocclusion. We show an addi-
tional experimental ablation example in Fig. 15, removing
masked depth supervision and disocclusion handling (as in
Fig. 8). Removing the former causes significantly damaged
geometry (and thus considerable visual artifacts as well),
while ablating the latter increases blurriness in the disoc-
cluded region (i.e., around newly unveiled details near the
occlusion boundary).

Disparity Smoothing. In Fig. 16, we consider the ef-
fect of ablating our disparity smoothing approach (see § 4.1
and Appendix C), utilized for obtaining depth in the masked
area and matching it to the surrounding scene geometry.
Particularly close to the mask boundary, we see that the
unsmoothed geometry has a much more jarring transition
between the masked and unmasked areas.

E.3. Qualitative Results

Comparisons. Additional comparisons to SPIn-NeRF,
NeRF-In, and DreamFusion are shown for novel view syn-
thesis in Fig. 17. Notice that utilizing the DreamFusion [49]
loss along with the Masked-NeRF (see § 5 and Appendix B)
can result in unrealistic colours (first row) and sometimes
a failure to converge (second row), though the quality im-
proves over Masked-NeRF alone (see Table 1). NeRF-
In [34] is blurry in masked areas, as the textures do not
match well in a pixelwise manner. SPIn-NeRF [42] reduces
this blurriness considerably, but still incurs some level of
blur, especially in the presence of more complex textures
(e.g., second row). In contrast, our method provides sharp
details for all cases.

under a CC BY 3.0 License.
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Figure 13: Schematic overview of our NeRF fitting algorithm for 3D inpainting. The inputs to the method are a single
inpainted reference view, Ir, and a set of posed images with associated inpainting masks (leftmost column). We begin the
fitting process with standard NeRF supervision on the unmasked areas of the images, after which we can render a disparity
map, D̂r, with reasonable quality outside the mask (lower-left insets). We then use a monocular depth estimator to obtain the
predicted disparity, D̃r, and apply a novel alignment procedure (§ 4.1) to obtain an aligned disparity map, Dsmoothr , which
can be used to supervise the depth under the mask via loss Lmasked

depth (upper middle inset). Finally, to obtain view-dependent
effects in unseen views (§ 4.2), we utilize our new view-substitution technique (§ 4.2.1) to render an image, Ir,t, via the
reference camera, but with the colours of a non-reference (target) view, It (centre-right inset). The view-substituted image,
Ir,t, is subtracted from the reference view, Ir, to obtain a residual image, ∆t = Ir−Ir,t; we then apply the bilateral solver, B,
to refine ∆t, using the reference mask, Mr, to construct a confidence map (low inside the mask and high outside it), guided
by the bilateral affinities of Ir (upper-right insets; see § 4.2.2). This has the effect of “diffusing” the view-dependent effects
of the non-reference view from outside the mask into the inside of the masked area, obtaining an “inpainted” residual, rest.
Subtracting this from Ir gives our desired colours, Îr,t = Ir − rest, which can be used to supervise the colours under the
mask (lower-right insets). The resulting combined losses thus supervise the NeRF from non-reference target viewpoints both
outside the mask (Lunmasked

rec ) and inside the mask (Lmasked
depth and Lmasked

rec ). See § 4 for details.3

Larger Camera Motion. We further provide 3D in-
painting results on scenes with larger camera motions in
Fig 18. Our model produces view-consistent outputs. For
this experiment, we used scenes from IBRNet dataset [72].

Controllability. We also provide more examples of con-
trollable inpainting in Fig. 19. Notice that we can easily
control various aspects of the inpainted scene, such as the
presence or absence of roots in the tree (upper rows) or the
length of the stone bench (lower rows), by simply changing
the inpainting of the single reference image. For additional
examples of controllable insertion, see also Fig. 10.

F. Implementation Details

In our experiments, both Ndepth and Nbilateral are set to
2000. We train each scene for 10000 iterations. The dis-
occusion handling is run every Ndo = 3000 iterations. The
weights γmasked

depth , γmasked
rec , γdo, ηdo, and γsmooth are set to 4, 2,

1, 0.25, and 1000, respectively, and cei is set to 2. We fol-
low [42] and use a combination of [44] and [11] for faster
convergence, and dilate all of the masks for 5 iterations with
a 5× 5 kernel to make sure that the masks cover the whole
object, and to mask some of the shadows of the unwanted
object. All of the images are downsized four times to re-
duce memory usage and match the experiments of SPIn-
NeRF [42]. We also use the distortion loss proposed by [3]
for reducing the floater artifacts. We set the weight of the
distortion loss to 0.01. For generating multiple inpainted
source views, we leverage the diversity of denoising dif-
fusion models, and use stable-diffusion inpainting v2 [55].
For inpainting the residuals with the bilateral solver, we set
the brightness and colour bandwidths to 4, while the spa-
tial bandwidth was set to 128. The strength smoothness
and the number of PCG iterations are set to 128 and 25,
respectively. For disocclusion handling, we use LaMa [61]
as the 2D inpainter and use three target images for T (cor-
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Figure 14: Overview of the outputs of our view-substitution method. The input views and masks (top-left) with their corre-
sponding camera parameters, in addition to a single reference view (bottom-left), are the inputs to our multiview inpainting
approach. On the right hand side, we show the view-substituted renderings, {Ir,t1 , · · · , Ir,t4}, for four different target views,
{t1, · · · , t4}. For each view-substituted image, Ir,t, we also provide the absolute value of the residual, |Ir− Ir,t|, to illustrate
the view-dependent effects provided by our approach. Notice that all of the view-substituted images are looking at the scene
from the reference camera, but the rendered colours are from different target cameras.
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Figure 15: Qualitative example of effects of ablation (see
also Fig. 8). Notice the degradation incurred by not us-
ing the masked depth supervision (lower-middle inset) and
the slightly blurrier outputs in the disoccluded region when
not using Ldo (upper-right inset; look closely at the zoomed
area, particularly at the background close to the edge of the
inserted duck).

Input Views & Masks Reference View w/o Disparity Smoothing w/ Disparity Smoothing

Figure 16: Effect of our disparity smoothing step (see § 4.1
and Appendix C) on the rendered disparities. As illustrated
above, the edges of the masked region (around the box) are
more blended in with the surrounding after adding the dis-
parity smoothing component.

responding to the cameras furthest leftward, rightward, and
upward). A small morphological dilation (four iterations
with a 3 × 3 kernel) is applied to remove noise from the
disocclusion masks. The bilateral filter in the disocclusion
case uses a spatial bandwidth of only 8. Our implemen-
tation is mainly in PyTorch [46]. For generating the in-
paintings for Ours-SD, we used stable diffusion inpainting
v2 [55], and a simple per-scene text prompt describing the
inpainted scene. Below are the text prompts used for SPIn-
NeRF scenes:

• A stone bench, a bush in the background, the bench is
grey with a rectangular shape in perspective, photore-
alistic 8k

• A wooden tree trunk on dirt, photorealistic 8k

• A red fence, photorealistic 8k

• Stone stairs, photorealistic 8k

• A circular lid made of rusty iron on a grass ground,
photorealistic 8k

• A corner of a brick wall, photorealistic 8k

• A wooden bench in front of a white fence, photoreal-
istic 8k

• An image of nature with grass, bushes in the back-
ground, photorealistic 8k
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Figure 17: Additional qualitative comparisons to baselines with synthesized novel views. The Masked-NeRF+DreamFusion
model (second column) does improve quantitatively (see Table 1) over using Masked-NeRF alone or simply removing the
object in 3D without inpainting (the “Object-NeRF” baseline), but it does not output sufficiently realistic details to outperform
our method: see the oversaturated colours on the fence in first row and the unnatural output in the second row. NeRF-In [34]
(third column), here using the “multiple” variant with LaMa [61], is quite blurry, due to disagreements between inpainting
details among the input images. SPIn-NeRF [42] (fourth row) improves on this via the use of a perceptual loss [84], but
still generates blurry details when significant disagreement among inpaintings are present (semantic differences, as such the
presence or absence of the pipe in the second row, and complex textures (e.g., the grassy dirt in row one or the variously
coloured bricks in row two) can exacerbate this problem). In contrast, our method is consistently sharp; see also Fig. 7.
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Figure 18: Additional results of our model on scenes with larger camera movements.

• A desk in front of a brick wall with an iron pipe, pho-
torealistic 8k

• A brick wall, photorealistic 8k

Note that we did not engineer the prompts to improve the
results. We typically selected the first generated inpainting.
However, as seen in Fig. 2, sometimes, the stable diffusion
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Figure 19: Qualitative illustration of our results on addi-
tional scenes from the SPIn-NeRF dataset [42]; see also
Fig. 10. For each scene, we use two different reference
views to generate corresponding inpainted scenes. For each
inpainted scene, we show two novel view renderings. Note
the ability to insert novel content into the 3D scene or mod-
ify existing scene structure, such as adding the tree roots
and controlling the length of the bench. Please see our sup-
plementary website for additional visualizations.

inpainter adds objects in the scene; in those cases, we regen-
erated the output to get an inpainting without any additional
object for a fair comparison to the baselines. For quantita-
tive experiments, we always select the 30-th image among
the 60 training views in SPIn-NeRF’s dataset [42] as the
reference view.

G. Metrics: Additional Details

The ill-posed nature of inpainting means that evaluation
is non-trivial: “ground-truth” images are merely one of an
infinite number of possible solutions, any plausible member
of which should be considered valid. We therefore focus on
evaluating perceptual quality and realism, rather than recon-
struction, via two types of metrics: full-reference (FR) and
no-reference (NR).

In the FR case, we utilize the ground-truth (GT) images
of the scene without the object for comparison with LPIPS
[84] and Frechet Inception Distance (FID) [16]. LPIPS, a
perceptual distance, is far more robust to changes that main-
tain textural consistency than pixelwise distances. For FID,
we compare the distributions of encoded statistics between
the inpainted and GT images, which confers high robustness
to mismatches in local details, focusing instead on agree-
ment in high-level visual appearance. Both of these met-
rics were used previously for 3D inpainting evaluation [42].
For both LPIPS and FID, we only perform the comparison
inside the bounding boxes of the objects. We expand the
bounding boxes by 10% to match SPIn-NeRF’s [42] setup.

However, FR metrics are not completely robust to the
choice of reference image, preferring solutions more simi-
lar to the GT over others that are equally perceptually real-
istic. This is exacerbated if an inpainting model inserts new
semantic content into a scene, as recent diffusion-based ap-
proaches are apt to do (e.g., [55, 50]), whether it is percep-
tually realistic or not. Thus, we consider two NR metrics,
where image quality is assessed in a stand-alone manner.
The first measure is simply the variance of the image Lapla-
cian, a classical measure of sharpness (e.g., [48]), which has
been previously used to evaluate 2D generative image mod-
els [66, 17]. The second is MUSIQ [25, 7], a transformer-
based model for NR image quality assessment, meant to re-
produce human perceptual judgments.

Note that our metrics in the FR case are computed
against bounding boxes (containing the object mask) in
held-out views, while our NR sharpness metrics are com-
puted across 120 renders from a camera in a spiralling pat-
tern (in video form). In this way, we assess inpainting qual-
ity in its full 3D context; i.e., we ensure that the inpainting
quality generalizes to novel views.


