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1 Appendix A

Full table versions. Method variants not shown in the main paper are emphasized by bold.
In Table A1, and Table A7, we also show results using image generators tuned by us.

Specifically in CUT [9], the downsampling and upsampling convolutional layers are trainable
in both the generator and discriminator, generator weights are initialized following [3] as
in our HEDNGAN, the contrastive loss is applied on the output of a different set of layers
(4,7,10,14), and weight λY of identity loss is set to 10. We observe that learning the con-
volutional layers and changing the layers in the contrastive loss aids the performance of the
final retrieval models, while the other changes has shown to stabilize training in our setup.
In CyEDA [2], while training on the SfM 120k dataset [12], weight λ of cycle consistency is
set to 0.3. We observed that the original λ = 10 causes the night generator to synthesise
images nearly identical to the input day images.

In the Table A7, we also tested augmentation with CycleGAN trained on the Aachen
dataset [15, 14, 20], with both Aachen v1.0 and Aachen v1.1 images together. Aachen
dataset contains much less night training examples than SfM 120k dataset (206 compared to
10039, respectively). Despite that, the performance loss of CycleGAN Aachen augmentation
is negligible, see Table A7.
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VGG-16 backbone
Method Avg Tokyo ROxf RPar
GeM [12] 69.9 79.4 60.9 69.3
GeM N/D [4] ! 71.1 83.5 60.0 69.8
CIConv [6] - 83.3 - -
CLAHE C [4] 71.6 84.1 60.8 69.8
CLAHE N/D C [4] ! 72.4 87.0 60.2 70.0
HEDNGAN CD (ours) 73.4 88.9 61.1 70.3
CycleGAN CD (ours) 74.0 90.2 60.7 71.0

ResNet-18 backbone
Method Avg Tokyo ROxf RPar
GeM 65.4 76.1 50.5 69.5
GeM N/D ! 67.0 79.6 51.3 70.0
CLAHE C 67.3 80.6 52.6 68.6
CLAHE N/D C ! 68.0 82.5 52.5 69.0
RCFNGAN CD (ours) 69.4 83.5 54.4 70.0
HEDNGAN CD (ours) 69.6 85.1 53.6 70.0
CycleGAN CD (ours) 69.7 84.4 55.1 69.6

ResNet-50 backbone
Method Avg Tokyo ROxf RPar
GeM 74.6 85.4 63.4 75.1
GeM N/D ! 75.7 88.3 63.1 75.6
CLAHE C 74.7 87.4 62.5 74.2
CLAHE N/D C ! 75.3 89.0 62.3 74.5
RCFNGAN CD (ours) 76.8 91.4 64.5 74.4
HEDNGAN CD (ours) 77.0 91.7 64.4 74.9
CycleGAN CD (ours) 77.0 92.3 64.0 74.7

ResNet-101 backbone
Method Avg Tokyo ROxf RPar
GeM [12] 75.7 85.0 65.3 76.7
GeM N/D ! 77.0 88.6 65.7 76.8
CIConv [6] 75.0 88.3 62.0 74.7
CLAHE C 76.9 88.1 66.1 76.6
CLAHE N/D C ! 77.4 89.5 66.1 76.5
CUT CD 77.9 90.2 65.7 77.7
CUT (tuned) CD 78.0 90.9 65.7 77.3
CyEDA BDD CD 77.8 90.3 65.7 77.3
CyEDA GTA CD 78.2 91.2 65.8 77.6
CyEDA (tuned) CD 78.0 90.9 65.5 77.5
RCFNGAN CD (ours) 78.2 91.5 66.8 76.3
HEDNGAN CD (ours) 78.4 92.2 66.3 76.6
CycleGAN CD (ours) 78.4 92.0 66.8 76.4

(continues)
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HOW ResNet-18 backbone
Method Avg Tokyo ROxf RPar
HOW [16] 80.8 87.8 75.1 79.4
HOW N/D ! 82.0 89.2 75.5 81.4
RCFNGAN CD (ours) 81.8 91.5 74.6 79.4
HEDNGAN CD (ours) 82.0 91.6 74.6 79.7
CycleGAN CD (ours) 82.4 92.9 74.6 79.8

Table A1: Comparison in terms of mAP on Tokyo 24/7, ROxf Medium and RPar Medium
datasets and their average on retrieval. Methods marked by ! use paired day-night training
data. Methods starting with GeM and CLAHE not marked with a reference were trained
by us. The best score for each backbone architecture (in separate tables) is emphasized by
red bold, second best by bold.

Method Avg Tokyo ROxf RPar

EdgeMAC [11] 45.6 75.9 17.3 43.5
HEDMAC 56.8 79.5 38.3 52.5
HEDNMAC 59.2 81.9 38.4 57.2
RCFNMAC 58.5 88.9 35.1 51.4

HEDMAC+GeM ‡ 72.0 84.8 60.9 70.3
HEDNMAC+GeM ‡ 72.6 85.7 61.1 70.9
HEDMAC+NGAN ‡ 73.8 90.9 60.1 70.5
HEDNMAC+NGAN ‡ 74.4 91.4 60.6 71.3
HEDMAC+GAN ‡ 74.2 91.5 60.0 71.2
HEDNMAC+GAN ‡ 74.7 91.8 60.4 71.9

Table A4: The effect of our trained HEDN detector (from HEDNGAN) on the EdgeMAC [11]
method. HEDMAC and HEDNMAC is a variant of EdgeMAC method with the HED [18]
edge detector with either original or our weights, respectively. RCFNMAC is a variant of
EdgeMAC with the RCF [7] edge detector with our weights. In the bottom block, ensembles
of EdgeMAC variants with chosen methods from Table A1 are reported. GeM is from [12],
NGAN corresponds to HEDNGAN CD, and GAN to CycleGAN CD, all from Table A1.
Ensembles have double the dimensionality (1024) and are marked with ‡. The best scores
for each dimensionality are in bold.
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Method Avg Tokyo ROxf RPar

GeM 70.0 80.4 59.9 69.8
GeM D 70.3 81.2 59.8 69.9
CLAHE C 71.9 85.4 60.0 70.1
CLAHE CD 72.2 85.9 60.3 70.5

GeM N/D ! 71.5 84.0 60.4 70.0
GeM N/D D ! 71.5 84.1 60.3 70.1
CLAHE N/D C ! 72.5 87.5 59.9 70.1
CLAHE N/D CD ! 73.0 87.7 60.8 70.7

RCFNGAN 72.3 86.8 59.8 70.2
RCFNGAN D 72.7 87.6 60.1 70.4
RCFNGAN C 72.9 87.8 60.4 70.6
RCFNGAN CD 73.2 88.3 60.4 70.8

HEDNGAN 72.7 88.0 60.2 70.0
HEDNGAN D 73.0 88.7 60.2 70.1
HEDNGAN C 73.2 88.7 60.5 70.4
HEDNGAN CD 73.4 88.8 60.7 70.6

CycleGAN 73.0 88.8 59.6 70.5
CycleGAN D 73.3 89.1 59.9 70.7
CycleGAN C 73.6 89.6 60.5 70.9
CycleGAN CD 74.0 90.2 60.7 71.0

Table A5: The effect of diverse anchors (D). Methods GeM [12], GeM N/D, CLAHE C [4],
and CLAHE N/D C [4] from Table A1 are reported in the top two blocks. Please note that
we re-train the models for this ablation, so we obtain a slightly higher performance. In
the last three blocks, the effect of CLAHE (C) and diverse anchors (D) is reported on the
RCFNGAN, HEDNGAN and CycleGAN methods. The best score for each dataset in each
block is in bold.

Method
{day, sunset} {sunset, night} {day, night}

D)S S)D S)N N)S D)N N)D

CLAHE C 97.7 98.2 80.1 81.3 70.9 76.1
CLAHE CD 97.5 98.4 80.2 81.3 72.4 77.0

CLAHE N/D C ! 97.5 98.2 80.3 86.2 73.0 81.3

CLAHE N/D CD ! 97.4 97.8 80.8 86.5 74.0 82.2

HEDNGAN C 97.1 98.2 84.5 86.9 77.1 80.3
HEDNGAN CD 97.5 98.0 84.3 88.3 77.9 81.1
CycleGAN C 97.6 98.2 85.7 88.5 78.8 81.4
CycleGAN CD 97.8 98.2 86.8 89.3 80.0 82.6

Table A6: Retrieval performance (mAP) on Tokyo for a combination of three different
subsets of the dataset – day (D), sunset (S), and night (N). Images from the first class are
always queries and from the second class are positives (query→positive); the last image of
the scene from the unused class is excluded from the evaluation. Scores for selected methods
from Table A5 are reported.
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Night Data Avg Tokyo ROxf RPar

DRIT CD 73.5 90.2 59.8 70.5
CUT CD 73.0 87.7 60.3 71.1
CUT (tuned) CD 73.4 88.6 60.8 70.8
CyEDA [2] BDD CD 72.9 87.9 60.4 70.3
CyEDA [2] GTA CD 72.9 87.9 60.3 70.4
CyEDA CD 70.9 82.0 60.1 70.5
CyEDA (tuned) CD 73.3 88.2 60.5 71.2
RCFNGAN CD 73.2 88.3 60.4 70.8
RCFNGAN 50% CD 73.4 90.0 59.7 70.4
HEDGAN CD 73.2 88.1 61.0 70.5
HEDNGAN CD 73.4 88.9 61.1 70.3
HEDNGAN 50% CD 73.4 90.3 60.0 70.0
CycleGAN CD 74.0 90.2 60.7 71.0
CycleGAN 50% CD 73.9 91.4 60.0 70.4
CycleGAN Aachen CD 73.8 89.9 60.7 70.8

CycleGAN + N/D CD ! 73.5 88.6 60.8 71.1
CycleGAN + N/D 50% CD ! 73.9 90.1 61.1 70.6
HEDNGAN + N/D CD ! 73.3 87.9 61.1 70.8
HEDNGAN + N/D 50% CD ! 73.6 89.1 61.1 70.6
HEDNGAN + HEDGAN CD 73.4 88.0 60.7 70.6
HEDNGAN + HEDGAN 50% CD 73.4 90.0 60.5 69.8
CycleGAN + CycleGAN Aachen CD 74.0 90.4 60.5 71.1
CycleGAN + CycleGAN Aachen 50% CD 74.0 91.4 60.3 70.4
HEDNGAN + CycleGAN CD 74.0 90.0 61.0 70.9
HEDNGAN + CycleGAN 50% CD 74.1 91.4 60.5 70.5

Table A7: The impact of retrieval training data. In the top block, generator architec-
tures DRIT [5], CUT [9] (original and our tuned variation), CyEDA [2] (pretrained models
from [2], trained by us on SfM dataset, and our tuned variation trained on SfM 120k),
RCFNGAN (trained RCF), HEDGAN, HEDNGAN (trained HED), and CycleGAN [21] are
tested. In the bottom block, the HEDNGAN or CycleGAN generator architecture is further
combined with the SfM-N/D dataset (e.g . HEDNGAN + N/D) or a different generator (e.g .
HEDNGAN + CycleGAN) with ratio 1:1; scores for 25% (default in experiments) and 50%
of night images in the training data are reported. Methods marked by ! use paired day-night
training data. The best score for each dataset in each block is in bold.
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2 Appendix B

We provide example outputs for all generative models referred in the paper. Generators for
translation from day to night as well as from night to day are examined in Figure B1, and
Figure B2, respectively. Please note that HEDNGAN, RCFNGAN, and CUT architectures
do not contain a night → day generator.

We observe that for night to day translation (Figure B2), the ToDayGAN [1] method
achieves satisfactory results only on the RobotCar dataset [8]. Also, these results are visually
more appealing than other results on this dataset, even though a car is hallucinated close
to the middle of the image. This can be explained by the fact that the ToDayGAN method
is specifically trained for this dataset.
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Day original ToDayGAN [1] HEDNGAN RCFNGAN CycleGAN

(continues)
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Day original CyEDA BDD CyEDA (tuned) CUT DRIT

Figure B1: Examples of day images translated into the night domain by different day →
night generators. The columns correspond to (left-to-right): the original image, ToDay-
GAN generator [1], our generators HEDNGAN, RCFNGAN, and CycleGAN, the original
image, CyEDA [2] generator trained on BDD dataset [19], CyEDA generator trained on
SfM 120k [12] and tuned by us, and our CUT, and DRIT generators. The rows show example
images from different datasets (top-to-bottom): SfM 120k [12], Aachen [14, 15], Tokyo [17],
Oxford [10], and RobotCar [8], respectively.
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Night original ToDayGAN [1] CycleGAN

(continues)
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Night original CyEDA BDD CyEDA (tuned) DRIT

Figure B2: Examples of night images translated into the day domain by different night →
day generators. The columns correspond to (left-to-right): the original image, ToDayGAN
generator [1], our CycleGAN generator, the original image, CyEDA [2] generator trained
on BDD dataset [19], CyEDA generator trained on SfM 120k [12] and tuned by us, and
our DRIT generator. The rows show example images from datasets (top-to-bottom) SfM-
N/D [4], Aachen [14, 15], Tokyo [17], and RobotCar [8], respectively.
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3 Appendix C

Examples of the evolution of light condition invariance.
In Figure C1, a training data tuple is visualized. The negatives are images of a dif-

ferent landmark that are the most similar to the translated anchor. Negatives are mined
(re-computed) in the beginning of each epoch, so as the network trains, the mined nega-
tives change - mined negatives shift from appearance-similar dark images to content-similar
images of any domain.

In Figure C2, in each example, there are three images from the SfM-N/D [4] validation
set: night anchor, day positive, and mined negative. The distance between the anchor and
positive as well as the anchor and negative is plotted - increasing the gap between these two
distances translates to easier distinction of the day positive from the night negative.

In epoch 0, the embedding network starts from ImageNet weights [13] and has never
seen a night image. Therefore the two dark images are deemed similar, measured in L2
distance of their embeddings, while the images of the same objects under different light
conditions are less similar. Later in the training with HEDNGAN augmentation, the distance
between the images starts reflecting actual visual similarity rather than the similarity of
image illumination.
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(continues)
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Figure C1: The visualization of hard-negative mining during the training of our method.
The anchor image is translated with our HEDNGAN generator into the night domain. Five
hardest negative examples are mined for each translated anchor at the beginning of each
epoch. We provide mined examples at epoch 0, 10, and 20 for two different anchors. Notice
the shift from negatives that are similar to the translated anchor in appearance to negatvies
that are similar in content.

13



Anchor Positive Negative

0 5 10 15 20 25 30 35 40
epoch

0.65

0.70

0.75

0.80

L2
 d

ist
an

ce

pos
neg

Anchor Positive Negative

0 5 10 15 20 25 30 35 40
epoch

0.70

0.75

0.80

0.85

L2
 d

ist
an

ce

pos
neg

Figure C2: Two examples of image triplets: night anchor, day positive and mined negative
(from left to right). Under each triplet, the L2 distance of anchor-positive (green) and
anchor-negative (red) is plotted against the current training epoch. Notice the expanding
gap between these two distances as the training progresses.
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