
Supplementary Materials for
Online Class Incremental Learning on Stochastic Blurry Task Boundary

via Mask and Visual Prompt Tuning

A. Details on the Compared Methods

In our experiments involving memory management, we
utilized reservoir sampling as our method for memory man-
agement. We followed ER [10] to utilize memory in train-
ing, which combines half of the training batch from the
streamed data with half of the training batch from mem-
ory. As online continual learning can not handle whole data
in a task, other memory management methods such as herd-
ing selection [9] and mnemonics [7] are inapplicable. Also,
memory management of Rainbow Memory [1] is inappli-
cable in online continual learning. Because they are based
on the information of uncertainty from the whole task sam-
ples. Thus, we followed the rainbow memory training pro-
cess from the CLIB [5].

LwF [6] is a classical method in continual learning which
leverages knowledge distillation to prevent the model from
catastrophic forgetting. LwF was introduced for offline
learning. So, we modified the LwF to apply to online con-
tinual learning. Modified LwF distills the knowledge in ev-
ery batch.

B. Additional Ablation Studies

We conducted ablation studies for the hyperparameter γ,
m and α value used in gradient similarity-based focal loss,
adaptive feature scaling, and total loss respectively.

B.1. Hyperparameters γ and m

Table 1 shows the result of the hyperparameter γ abla-
tion study. Hyperparameter γ controls the ignore score cal-
culated by a sample in gradient similarity-based focal loss.
We set the γ value to 0.5, 1.0, 1.5, 2.0, 2.5 and evaluate
the performance by AAUC and ALast. When the γ was 2.0,
our method scored optimal performance in both AAUC and
ALast. Also, we experimented with the performance varia-
tion by the hyperparameter m. Hyperparameter m is used in
adaptive feature scaling to yield a marginal benefit score of
a sample. Table 2 shows the result of the performance vari-
ation by the hyperparameter m. As we could see through
Table 2, our novel method was robust to margin value. So,

Method γ AAUC ALast

Baseline - 67.07±4.16 56.82±3.49

MVP (Ours)

0.5 67.25±5.08 60.39±1.55
1.0 67.45±5.05 60.95±1.61
1.5 67.52±5.11 61.05±1.37
2.0 68.10±4.91 62.59±2.38
2.5 67.62±5.17 61.11±1.55

Table 1. γ controls the loss value of gradient similarity-
based focal lass. Underlined value denotes the used value
for our method and the bold value represents the highest
performance in the table.

Method m AAUC ALast

Baseline - 67.07±4.16 56.82±3.49

MVP (Ours)

0.1 67.20±4.72 58.82±1.27
0.3 67.49±4.83 60.04±1.12
0.5 68.10±4.91 62.59±2.38
0.7 67.89±4.94 61.31±1.71
0.9 67.29±4.84 61.81±0.47

Table 2. m is a margin value used in calculating the
marginal benefit score by a sample. Underlined value de-
notes the used value for our method and the bold value rep-
resents the highest performance in the table.

α
Memory = 0 Memory = 2,000

AAUC ALast AAUC ALast

- 40.11±1.27 29.24±4.63 49.00±2.06 37.96±0.34
0.1 40.38±1.67 31.63±3.39 52.13±0.14 50.50±3.11
0.3 40.52±1.59 31.81±3.66 52.14±0.28 50.51±2.76
0.5 40.60±1.21 31.96±3.07 52.47±1.45 50.54±2.08
0.7 40.53±1.01 31.56±2.05 52.28±2.34 50.43±1.53

Table 3. α is a balancing value in total losses. Underlined
value denotes the used value for our method and the bold
value represents the highest performance in the table.

we set the m to 0.5 showing the highest performance among
all seeds.
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Figure 1. We set the prompt pool size and the number of se-
lected prompts to 5, 10, and 20 and 1, 3, and 5 respectively.
Top-K denotes the number of selected prompts.

Method Forgetting
Baseline 46.61±5.30

+ GSF,AFS 45.35±4.40
+ Cont,Mask 39.98±4.02
+ Cont,Mask,GSF,AFS 39.68±3.98

Table 4. The ablation study on forgetting on ImageNet-R.
The results demonstrate that our approach significantly mit-
igates forgetting and ensures better retention of previously
learned knowledge.

B.2. Hyperparameter α

Table 3 presents the performance of our method for var-
ious values of α. Notably, the optimal performance is ob-
served when an α value was 0.5, demonstrating consistent
and robust results across different α values. Based on these
findings, we set the α value to 0.5 as the most suitable
choice for our experiments. This decision is grounded in
the stability and high performance exhibited by the method
at this particular alpha value, ensuring reliable and repro-
ducible outcomes in our research.

B.3. Mask-Prompt Pool Size and Prompt Selection

Since the number of mask-prompt pairs has a large im-
pact on our method, we ran experiments with a variety of
mask-prompt pool sizes and prompt selection. Figure 1 rep-
resents the ALast scores from the mask-prompt pool size
and the number of selections. Top-K denotes the number
of selected prompts. As shown in this figure, when the

prompt pool size was fixed, a performance drop happened
when more prompts were selected. Since selecting more
masks and prompts induced much severe forgetting in each
prompt, selecting a lot of masks and prompts exacerbated
the performance. We set the mask-prompt pool size to 10
and the number of selection sizes to 1 to ensure the optimal
performance of our method.

B.4. Forgetting

As shown in Table 4, we conducted experiments to as-
sess the impact of each method on forgetting. Our find-
ings revealed that GSF and AFS had limited effects on for-
getting, as they predominantly targeted minor and major
classes, respectively, in the class imbalance scenario. In
contrast, our proposed approach, contrastive prompt tun-
ing, demonstrated significant effectiveness in addressing
the challenges of key floating and selection. Additionally,
the utilization of masking proved to be highly effective in
preventing forgetting by inhibiting the backpropagation of
fully learned knowledge. These results collectively empha-
size the robustness and efficiency of our method in effec-
tively mitigating forgetting during the learning process.

C. Visualization of Masks and Prompt Keys
We performed visualizations to verify the suggested

method experimentally and to understand our novel method
MVP further. We visualized the mask and key of prompt
methods.

C.1. Instance-wise Logit Mask

In order to validate the effectiveness of the mask used in
our proposed method, we conducted a mask visualization
experiment. The purpose of this experiment was to gain
a better understanding of how the mask is utilized during
the learning process. As Figure 2 illustrates, we could see
that each mask opens for a different class. We could also
see that on some parts of the masks, classes had their val-
ues decreased, preventing further updates. Also, some of
them got increased value, allowing the model to learn rele-
vant knowledge. The results demonstrated that the mask is
effective in facilitating the division of tasks and protecting
knowledge as intended. By facilitating the division of tasks
and protecting knowledge, the mask enabled our method to
perform well even in scenarios with blurry boundaries and
multiple classes in a single batch. This is a significant con-
tribution to the field of continuous learning and has impor-
tant implications for real-world applications.

C.2. Prompt Key

Figure 3 shows the t-SNE visualization of the prompt
key used in each prompt-based methods. Since DualPrompt
[11] do not have any constraints on key learning in common,



(a) Visualization of each mask value from class 0 to 9 after training task 0

(b) Visualization of each mask value from class 0 to 9 after training task 4

Figure 2. Visualization of mask value from class 0 to 9 (a)
after task 0 (b) after task 4. Because each mask blocks logit
from a different class, it seems to be noisy. It could be ob-
served the value of the mask change as it trained.

we saw the keys floating as the task changes. This changes
the function of each prompt in the feature space and could
cause severe semantic drift. In MVP, we could see that the
keys are kept at a reasonable distance from each other and
the movement is suppressed once learning is sufficiently ad-
vanced.

D. Discussions
D.1. Additional Results for the Forgetting Score

Table 5 shows the performance of our proposed method
with respect to the accuracy score and forgetting score. We

(a) t-SNE Visualization of prompt
key of DualPrompt [11] after train-
ing task 0

(b) t-SNE Visualization of prompt
key of DualPrompt [11] after train-
ing task 4

(c) t-SNE Visualization of prompt
key of MVP after training task 0

(d) t-SNE Visualization of prompt
key of MVP after training task 4

Figure 3. t-SNE visualization of the prompt key of (a) Du-
alPrompt [11] after task 0 (b) Dualprompt [11] after task 4
(c) MVP after task 0 (d) MVP after task 4. DualPrompt suf-
fered from the semantic drift because the key is constantly
changing as the task changes.

Memory Size Methods Metrics
ALast (↑) Forgetting (↓)

0

FineTuning 10.42±4.92 45.11±5.98
LwF [6] 36.53±10.96 56.43±12.91
L2P [12] 41.63±12.73 55.46±13.15

DualPrompt [11] 56.82±3.49 40.35±1.25
MVP (Ours) 62.59±2.38 34.63±2.46

500

ER [10] 60.68±1.15 28.85±3.51
EWC++ [4] 25.62±3.35 47.16±9.72

RM [1] 23.94±0.61 24.28±2.90
CLIB [5] 67.16±0.72 15.45±0.94

MVP (Ours) 79.32±1.28 14.57±1.60

2000

ER [10] 71.81±0.69 15.45±0.94
EWC++ [4] 46.93±1.44 28.75±7.58

RM [1] 65.51±0.55 9.50±1.49
CLIB [5] 72.09±0.49 8.07±0.98

MVP (Ours) 84.42±0.44 8.79±1.49

Table 5. We compared our method, MVP, to other existing
methods in two metrics. Forgetting is measured with the
best accuracy of each class and the inference accuracy after
all the tasks are trained.

used the forgetting measurement in [2] to report the forget-
ting results. As shown in this table, our method not only
scored the highest accuracy in the table but also the lowest
forgetting score. It denoted that MVP performs at best in
accuracy while minimizing the forgetting knowledge.



Method Memory = 500 Memory = 2,000
AAUC ALast AAUC ALast

L2P 69.91±1.49 56.58±0.64 75.24±0.82 68.73±0.80
DualPrompt 75.07±1.01 62.12±1.50 79.76±0.47 72.09±0.80

MVP-R (Ours) 76.52±0.73 65.19±0.58 80.67±0.75 74.34±0.32

Table 6. Comparison of ours with L2P and DualPrompt on Tiny ImageNet.

Method TFLOPs Training (s)
/Iter

CLIB 69.6 11.590
DualPrompt 4.37 0.906
MVP (Ours) 4.19 0.882

Table 7. Computational cost Analysis of
each method.

Note that low forgetting score do not mean a better
method than others. If a model did not train with newly
streamed data, there is no forgetting. However, reporting
the low forgetting score while keeping the high prediction
accuracy represents that the model can capture the knowl-
edge from the new data while preventing the model from
forgetting existing knowledge. Thus, forgetting measure-
ment considering prediction accuracy is crucial to estimate
the stability-plasticity of the method.

D.2. Additional Results with Memory

L2P and DualPrompt were initially not explicitly de-
signed to incorporate memory, although they can be utilized
in conjunction with memory. As shown in Table 6, we eval-
uated their performance in the presence of additional mem-
ory. Through extensive experiments conducted on the Tiny-
ImageNet Dataset, we observed that our method signifi-
cantly surpassed DualPrompt and L2P. This compelling out-
come confirms that the performance enhancement achieved
by our method over the baseline is attributed to additional
factors brought into play by memory utilization. These find-
ings reinforce the effectiveness and advantages of our ap-
proach, particularly when memory is incorporated, leading
to notable improvements in performance compared to the
baseline methods.

D.3. Computational Cost

In Table 7, we conducted a thorough analysis of the com-
putational cost associated with each method. This analysis
encompassed a comparison of all methods using a mem-
ory capacity of 2000. Notably, the CLIB method neces-
sitates forwarding for every individual sample to calculate
the memory importance, resulting in a substantial computa-
tional overhead. In contrast, our method achieves a lower
computational cost in comparison to DualPrompt (DP) by
strategically reducing certain operations during the prompt
selection process.

D.4. Task Configuration of Best and Worst Cases

We classified the classes into 3 categories: disjoint, ma-
jor, and minor in the Si-Blurry scenario. Disjoint classes
mean newly incomed classes that never appeared before.
Since disjoint classes appear only once with all the training
data, there is no overlap between tasks. Major classes and

Figure 4. This figure represents the task configuration of
training data in the best case. We reported the number of
samples from each task. Total means the summation of
training samples. We observed that training data are im-
partially distributed among the tasks in the best case.

Figure 5. The above figure represents the task configuration
of the worst case. Total means the summation of training
samples. We observed that training data were concentrated
on some tasks in the worst case.



Figure 6. Example of Si-Blurry Scenario.

minor classes have a blurry task boundary. If a major class
appeared in a task, that class turn to minor classes in other
tasks. Hence, the major class can be overlapped between
the tasks and once the major class appeared, it becomes the
minor class in other tasks.

The Figure 6 shows another variety of possible Si-Blurry
scenarios. Among these possibilities, we analysed the high-
est and lowest performing cases. Figure 4 and Figure 5
show the task configuration when our method scored the
highest and lowest performance among the all seeds. It
is noteworthy that the task configuration in the best case
seemed like training samples are distributed impartially and
in the worst case, training samples are concentrated on some
tasks.

In other words, in the best case, the training data were
impartially distributed to all tasks and it leaded to relatively
low biased in tasks. The model could learn the knowledge
among the tasks without severe weight drift or biased to
some tasks. In the worst case, however, the training data
were highly focused on some tasks and it leaded to a differ-
ent amount of learning in the model training between tasks.
In this case, the model could suffer severe catastrophic for-
getting [8, 3] and be highly biased to the tasks with a lot of
training samples. Our novel method MVP resolved this bias
problem, showed better result than prior works.
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