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Here, we provide additional details and visualizations re-
garding: the synthetic training set in section 1, the bench-
mark dataset USPTO-30K in section 2, the MolGrapher im-
plementation in section 3, and the MolGrapher evaluation in
section 4. Table 1

1. Synthetic Training Set details
In this section, we describe the synthetic training set

augmentations as well as the generation of atom-level an-
notations. Contrary to the image captioning methods, our
solution benefits from atom-level annotations, allowing to
train with much less examples. In particular, MolGrapher is
trained on 0.3 M images while Image2Graph [8] uses 7.1 M
images, and DECIMER 2.0 [7] uses 450 M images.

1.1. Augmentation

The synthetic training set is augmented at the molecule,
rendering and image levels.
Molecule level. As presented in Figure 1, molecules are
randomly transformed by: (1) displaying explicit hydro-
gens, (2) reducing of the size of bonds connected to explicit
hydrogens, (3) displaying explicit methyls, (4) displaying
explicit carbons, (5) selecting a molecular conformation,
(6) removing implicit hydrogens of atom labels, (7) rotat-
ing triple bonds, (8) displaying explicit carbons connected
to triple bonds, adding artificial superatom groups with (9)
single or (10) multiple attachment points, (11) displaying
wedge bonds using solid or dashed bonds, and (12) display-
ing single bonds as wavy bonds.

Table 1. USPTO-30K comparison with other benchmarks.
We compare the number of samples, the number of classes,
the molecule sizes and the proportion of molecules with stereo-
chemistry.

Dataset Number of Molecule sizes Stereo-chemistry Number of classes
samples [Min, Max] Mean proportion Atom Bond Superatom

USPTO 5719 [10, 96] 28 20.5 24 6 234
Maybridge UoB 5740 [4, 34] 2.6 13 20 6 0
CLEF 992 [4, 42] 26 33.9 15 6 43
JPO 450 [5, 43] 20 1.0 9 6 15
USPTO-30K 30000 [4, 543] 53 39.2 74 6 620
USPTO-10K 10000 [4, 198] 31 29.3 37 6 0
USPTO-10K-Abb 10000 [4, 162] 31 31.2 45 6 620
USPTO-10K-L 10000 [71, 543] 96 57.1 52 6 0

Rendering level. As demonstrated in Figure 2, the render-
ing parameters used in RDKit [6] are randomly set: (1) the
bond width, (2) the font, (3) the font size, (4) the atom label
padding, (5) the molecule rotation, which does not rotate
atom labels, (6) the display of atom indices and (7) their
font size, (8) the hand-drawing style, (9) the charges posi-
tions, (10) the display of encircled charges and (11) their
size, and (12) the display of aromatic cycles using circles.
Image level. As showcased in Figure 3, images undergo
several image augmentations on the fly: (1) the addition
of random captions, (2) the addition of random lines, (3)
the addition of pepper patches, (4) rotation, scaling, shift-
ing, (5) resolution downscaling, (6) gaussian blurring and
(7) x-y shearing. Finally, images are inverted in order to be
compatible with the zero-padding used by default for con-
volutional layers. The severity of augmentations is different
for training the keypoint detector or the node classifier. In-
deed, to only detect atoms positions, the keypoint detector
does not need to precisely distinguish atom labels.

1.2. Atom-level Annotation

Together with the training images, we generate the graph
ground-truth, i.e. the graph connectivity, the atoms and
bonds labels, and their positions. RDKit allows to embed to
the generated image some metadata, which stores the map-
ping between atom indices and their positions in the image.
At the same time, we store a MolFile [3] containing the
graph connectivity information and the class of each atom
and bond. By combining both of them, we then create the
graph ground-truth.

2. USPTO-30K Statistics and Visual Examples
In this section, we analyze the distribution of molecules

in the dataset USPTO-30K, we compare its composition
with other benchmarks, and visualize examples.

2.1. Statistics

Molecule sizes. Figure 4 presents the distribution of
molecule sizes in USPTO-30K, the size of a molecule being
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Figure 1. Molecule augmentations. The figure illustrates all molecule augmentations applied independently on a reference molecule.
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Figure 2. Rendering augmentations. The figure describes all rendering augmentations applied independently on a reference drawing.
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Figure 3. Image augmentations. The figure illustrates all image augmentations applied independently on a reference image. Images are
inverted in order to be compatible with the zero-padding used by default for convolutional layers.
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Figure 4. USPTO-30K molecule sizes distribution. The figure illustrates the distribution of molecule sizes (number of atoms) in USPTO-
10K (red), USPTO-10K-Abb (green) and USPTO-10K-L (blue). The population of each size bin is expressed in logarithmic scale.

defined as its number of atoms.
Atoms and superatom groups. Figure 5 and Figure 6

show the distribution of atom classes and abbreviations
in USPTO-30K. Randomly sampling images from all US
patents from 2001 to 2020 allows us to cover a large diver-
sity of atoms and superatom groups, including common but
also exotic ones.

Comparison with other benchmarks. Table 1 presents
the comparison of the compositions of USPTO-30K and
other benchmark datasets. USPTO-30K also contains more
samples, disentangles the study of clean and abbreviated
molecules. In comparison with existing sets, USPTO-30K
contains more samples, a greater range of molecule sizes,
more than 3× as many atom classes, 2× as many superatom
classes, and a higher proportion of molecules with stereo-
chemistry information.

2.2. Visualization

Figure 7 illustrates some examples of images randomly
sampled from USPTO-30K.

3. Implementation details

Atom and bond classes. The recognized atom classes
are ‘no atom’, ‘C’, ‘N’, ‘O’, ‘S’, ‘F’, ‘Cl’, ‘P’, ‘Br’, ‘I’,
‘B’, ‘Si’, ‘Sn’, ‘Te’, ‘Sb’, ‘Bi’, ‘Se’, ‘Al’, ‘As’, ‘W’, ‘Hg’,
‘Ge’, ‘In’, ‘Na’, ‘Pb’, ‘Mg’, ‘Pt’, ‘Tl’, ‘Fe’, ‘Ru’, ‘Cr’,
‘Li’, ‘Ar’, ‘Pd’, ‘Zr’, ‘Zn’, ‘Mo’, ‘Xe’, ‘U’, ‘Po’, ‘Ni’, ‘K’,
‘Cs’, ‘At’, ‘Yb’, ‘Ti’, ‘Tc’ and ‘Os’. The recognized bond
classes are ‘no bond’, ‘single’, ‘double’, ‘triple’, ‘wedge-
solid’, ‘wedge-dashed’ and ‘aromatic’.

Superatom groups recognition. Before applying PP-
OCR [4], the molecule images are preprocessed by remov-
ing some of the bonds to simplify the text labels recog-
nition. This is done by removing larger clusters of con-
tinuous filled pixels. Additionally, the mapping between
recognized superatoms and submolecules is automatically
created using the MolFiles provided by the United States
Patent and Trademark Office (USPTO) [1]. In total, 819
abbreviations can be recognized, the most common ones
being: ‘Me’, ‘CF3’, ‘CN’, ‘NC’, ‘OMe’, ‘Boc’, ‘OCH3’,
‘NO2’, ‘COOH’, ‘Ph’, ‘CO2H’, ‘O2N’, ‘H3CO’, ‘OEt’,
‘OCF3’, ‘NHBoc’, ‘N3’, ‘Et’, ‘HOOC’, ‘OBn’, ‘B(OH)2’,
‘CHF2’, ‘CO2Me’, ‘F3C’, ‘OAc’ and ‘t-Bu’. Abbreviations
also include R-groups labels such as X’, ‘Y’, ‘Z’, ‘R1’, ‘R2‘
or ‘R10’.

Stereo-chemistry recognition. In 2-D molecule depic-
tions, stereo-chemistry is represented using solid or dashed
wedge bonds, which respectively point towards or away
from the viewer. To recognize wedge bonds, the model
first predicts a node with a class ‘wedge-solid’ or ‘wedge-
dashed’. It is then needed to identify the direction of this
bond. For this purpose, the ratio of filled pixels on both
sides of the bond is computed. The side with the smallest
amount of filled pixels is inside the depiction plane and the
other one is outside.

Caption removal. Although MolGrapher is trained with
synthetic images containing random captions, it may not
cover the complexity encountered during inference, such as
Japanese captions. Thus, the OCR toolkit PP-OCR [4] is
used to detect and remove captions in images. Detected text
cells which respect some criteria are replaced by a white
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Atom class

Figure 5. USPTO-30K atom classes distribution. The figure shows the distribution of the atom classes in USPTO-30K. The count of
each atom class is expressed in logarithmic scale.
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Figure 6. USPTO-10K-Abb abbreviations distribution. The figure shows the distribution of the superatoms in USPTO-10K-Abb. Only
superatoms with more than 25 occurrences are displayed. The count of each superatom is expressed in logarithmic scale.
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Figure 7. USPTO-30K example images. The figure shows example images randomly selected in USPTO-10K, USPTO-10K-Abb and
USPTO-10K-L.

background. For instance, if a recognized text sequence
contains more than five consecutive lowercase characters,
it should necessarily be a caption.

Keypoint refinement. PP-OCR is also used to re-
fine keypoint predictions for superatom groups having
multiple attachment points, i.e. connected to the rest of
the molecule by multiple bonds. The keypoint detec-
tor learns to detect a keypoint at the extremities of each

bond. For long abbreviated groups with multiple attach-
ment points, each of its outgoing bond can be located
at different positions along the abbreviation. This situ-
ation results in several detected keypoints for the same
superatom. Therefore, if the initial prediction is an
invalid molecule, PP-OCR is used to merge keypoints
that are located within the same detected text cell.
Inference speed. On a machine equipped with one
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Figure 8. MolGrapher qualitative evaluation. The figure shows MolGrapher predictions for a broad diversity of input molecule images.
Input images (left) are displayed together with predicted molecules (right). The model can correctly handle challenging features, such as
large molecule or overlapping bonds.
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Figure 9. MolGrapher failure cases. The figure illustrates some examples of failure cases of MolGrapher. Input images (left) are displayed
together with predicted molecules (right). The predicted graph (right) is displayed when it can not be converted to a valid single-fragment
molecule.
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Figure 10. USPTO-10K performance analysis. The figure details the performance of MolGrapher (blue) and Img2Mol (red) on USPTO-
10K with respect to the molecule size.

NVIDIA A100 GPU and AMD EPYC 7763 CPU, process-
ing images by batches of 20, MolGrapher annotates an av-
erage of 3.1 images per second. This runtime measurement
was obtained by running MolGrapher on USPTO-30K.

4. MolGrapher detailed analysis

4.1. Qualitative evaluation

Qualitative examples. Figure 8 shows a sample of pre-
dictions for challenging input images. In practice, MolGra-
pher can be used to annotate low-quality images, unconven-
tional drawings, images noised by additional information
such as captions, atom indices, or stereo-chemistry annota-
tions. MolGrapher recognizes abbreviated groups, stereo-

chemistry and aromaticity.

Failure cases. A sample of failure cases is presented
in Figure 9. In particular, example (1) is a molecule with
challenging overlaps, leading to an incorrect double bond
prediction. Example (2) shows a large molecule that con-
tains a particularly long bond, which also overlaps with the
molecule. This long bond is not detected because the su-
pergraph construction algorithm discards it, according to its
threshold of maximum bond length. Modifying the super-
graph construction and generating bond overlaps, and long
bond augmentations in the synthetic training, could mitigate
these issues. Example (3) is an exceedingly large molecule
with more than 110 atoms. Although most of the structure
is correctly recognized, few bonds are occasionally miss-



Table 2. SOTA comparison with same training sets. We evaluate
the performance of MolGrapher by training it on various synthetic
datasets of different sizes and comparing it to different methods.
†: without hyper-parameters tuning.

Method Synthetic training set USPTO Maybridge-UoB CLEF-2012 JPO
CEDe CEDe @ 10K 79.0 74.1 68.0 49.4
MolGrapher CEDe @ 10K 84.5 89.8 79.6 59.2

MolGrapher MolGrapher @ 10K 87.5 93.8 86.2 61.5

Graph Generation † MolGrapher @ 300K 31.3 71.6 25.3 24.2
Img2Mol † MolGrapher @ 300K 15.5 23.2 10.0 11.3
MolGrapher MolGrapher @ 300K 91.5 94.9 90.5 67.5

Table 3. Ablation study of MolGrapher modules. To isolate the
errors stemming from each component, we replace the other two
components with Ground-Truth (GT) oracle predictions.

Keypoint detection Node classification Superatom recognition Synthetic test set @ 10K

Ours Ours Ours 94.3
Ours GT GT 95.8
GT Ours GT 97.2
GT GT Ours 98.1

ing. Further post-processing rules could be implemented to
force the attachment of unconnected fragments.

4.2. Quantitative evaluation

SOTA comparison on same training data. To provide
a comprehensive fair comparison with the available meth-
ods in Table 2. We trained MolGrapher on the synthetic
training set of CEDe [5]. MolGrapher still outperforms
CEDe on all benchmarks by a large margin. To assess the
contribution of our training data, we also train MolGrapher
on the same number (10k) of images as CEDe generated
using our pipeline (resulting in 30× less data). We then
trained open-source methods on our full dataset (300k). Our
method outperforms them by a substantial margin.

Ablation study. We perform an ablation study on MolG-
rapher’s components in Table 3. In order to isolate the errors
induced by each component, we replace the other two com-
ponents with Ground-Truth (GT) oracle predictions. We
use a synthetic test set of 10k images, since the ground-
truth graph with keypoint locations are not available on real
datasets. We observe that the main source of errors is the
keypoint detection, followed by the node classification.

4.3. Molecule Size Analysis

Figure 10 shows the precision of MolGrapher and
Img2Mol [2] on USPTO-10K with respect to the molecule
size. MolGrapher maintains a reasonable performance even
for remarkably large molecules of 90 atoms. The locality
of our approach allows to scale with respect to the molecule
size. On the other hand, Img2Mol fails to recognize cor-
rectly any molecule of more than 50 atoms.

4.4. Error Prediction

Contrary to image captioning methods, which are trained
to always generate valid SMILES sequences, our model
identifies incorrect predictions in many cases. Table 4

Table 4. MolGrapher error detection. We evaluate the ‘detected
error rate’, i.e. the proportion of MolGrapher errors that can be
detected because the predicted graph is not convertible to a valid
single-fragment molecule. The ‘filtered precision’ is the precision
computed on the filtered benchmarks, in which detected errors are
not considered.

MolGrapher USPTO-10K USPTO-10K-Abb USPTO-10K-L JPO
Detected error rate 20.3 15.1 52.5 40.1

Precision 93.3 82.8 31.3 67.5
Filtered precision 94.7 85.4 67.4 80.5

presents the ‘detected error rate’ of MolGrapher, i.e. the
proportion of errors that can be detected among the total
number of errors. Indeed, by performing low-level predic-
tions, we can detect that the predicted graph is not convert-
ible into a valid single-fragment molecule. Table 4 also re-
ports the ‘filtered precision’, which is the precision of Mol-
Grapher on the filtered benchmarks, in which the detected
errors are not considered. To annotate scientific literature at
large scale, and extract a viable source of knowledge, iden-
tifying incorrect predictions is critical.

5. Limitations and Future Works
Currently, MolGrapher is unable to recognize markush

structures, i.e. depictions of sets of molecules using posi-
tional and frequency variation indications. As future work,
we aim to generalize the MolGrapher graph structure to rep-
resent markush structures or even reactions.
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