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1. Overview
In the supplementary materials, we provide more details

of the submission: We show more quantitative and qualita-
tive results of few-shot generalization (paper Section 4.2.)
on various datasets in Section 2; We present details on the
design of each module in ActorsNeRF in Section 3; More
implementation details are discussed in Section 4.

2. Few-shot Generalization
This section serves to supplement the primary find-

ings of Section 4.2., where more quantitative and quali-
tative results are presented. Specifically, the setting con-
siders the support set consists of m frames, where m =
{5, 10, 30, 100, 300}, sampled uniformly from 300 consec-
utive frames of a monocular video of an unseen subject. The
objective is to synthesize the actor from novel viewpoints
with novel poses.

More Results. In addition to Neural Body and Numan-
NeRF, in this section, we additionally provide results com-
pared to NeuMan on the ZJU-dataset, as shown in Table 1,
Table 2, and Table 3. NeuMan (NM) is designed to jointly
model the human subject and scene by training separate
NeRFs for foreground and background. To adapt NeuMan
to our monocular few-shot setting, we only train the human
NeRF and zero out the output of the scene NeRF. Our re-
sults demonstrate that ActorsNeRF outperforms NeuMan in
all settings. To provide further visual comparison, we show
the rendering results for different methods and shot counts
in Figure 2, Figure 3, Figure 4, and Figure 5. The results
show that ActorsNeRF produces consistently smoother ren-
derings with higher-quality details and less body distortion,
while maintaining a valid shape across all few-shot settings.

We present additional qualitative results on the AIST++
dataset to complement Table 2 in the paper. The results are
shown in Figure 6, Figure 7, and Figure 8. Our proposed
method, ActorsNeRF, is shown to produce high-quality de-
tails, including facial features, while maintaining a smooth
boundary. In contrast, the baseline method produces noisy
renderings with broken body parts. These results demon-
strate the superior performance of ActorsNeRF in animat-

ing novel actors with few monocular images under chal-
lenging poses. The results also suggest that large-scale
pretraining allows the model to generalize better to unseen
poses and viewpoints, further highlighting the effectiveness
of ActorsNeRF in monocular few-shot 3D human body ren-
dering.

Comparison to Category-level NeRFs. Neural Human
Performer and MPS-NeRF are two methods that also em-
ploy NeRF models trained at the category-level with en-
coders. However, there are notable differences between
these methods and ActorsNeRF. First, both methods require
multi-view images for both training and inference, while
ActorsNeRF only requires a few monocular images. This
makes our setting more challenging, as our network must
reason about pose variances in addition to viewpoint differ-
ences when aggregating features from monocular images.
Moreover, while Neural Human Performer does not sup-
port novel pose synthesis for a novel human subject, Ac-
torsNeRF produces an animatable NeRF model for a new
observed person. MPS-NeRF implements a canonical space
and thus allows for animation of the new person given
multi-view images. In comparison, we design a novel two-
level canonical space to better fit individual shapes and in-
corporates localized SMPL local features for better feature
aggregation.

3. Network Architectures
Encoder. We employ ResNet-18 as encoder E to ex-

tract a feature set Uk = [Uk
p,U

k
s ]. U

k
p is a 256-dim tensor

of concatenated features from Res-Conv1, Res-block 1 and
Res-block 2. Uk

s further applied a convolutional layer on
the top of Uk

p and is with 64 channels.
Skinning Weight Network. The skinning weight net-

work takes the a global 256-dim embedding as input and
transforms it into a 1024-dimension vector. After reshaping
the vector into 1× 1× 1× 1024, 5 subsequential 3D trans-
posed convolution layers are applied to obtain a 3D volume
of shape 32×32×32×25. The skinning weights are defined
in the category-level canonical space. The final skinning
weights are modeled by the combination of a T-pose prior
(3D ellipsoidal Gaussian around each bone) and a residual
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Person 387 Person 393 Person 394
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

5-shot
Neuman 26.93 0.9551 59.65 27.17 0.9544 60.96 27.88 0.9474 59.68

Ours 27.26 0.9568 46.06 27.20 0.9553 46.29 28.09 0.9577 42.48

10-shot
Neuman 26.90 0.9551 51.14 27.39 0.9547 54.70 28.71 0.9582 48.35

Ours 27.15 0.9592 40.89 27.26 0.9565 42.56 28.71 0.9613 35.93

30-shot
NeuMan 27.14 0.9580 46.60 27.33 0.9573 48.39 28.73 0.9606 42.55

Ours 27.67 0.9610 36.76 27.59 0.9577 39.51 28.97 0.9614 34.29

100-shot
NeuMan 27.40 0.9568 46.38 27.47 0.9576 48.02 28.96 0.9614 41.22

Ours 27.66 0.9614 36.39 27.57 0.9580 39.33 29.07 0.9612 34.03

300-shot
NeuMan 27.61 0.9596 44.64 27.40 0.9577 48.46 28.70 0.9603 42.29

Ours 27.61 0.9612 36.18 27.59 0.9574 39.36 28.98 0.9611 34.17

Table 1: Few-shot generalization comparison for novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset.

Person 16 Person 17 Person 18 Person 19 Person 20

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

5-shot
NM 24.39 0.9763 29.21 24.77 0.9774 29.19 22.73 0.9745 31.65 24.60 0.9778 29.53 24.01 0.9786 28.17

ours 25.22 0.9796 22.03 25.88 0.9808 22.85 24.50 0.9811 22.38 25.24 0.9801 22.87 25.30 0.9827 21.34

30-shot
NM 24.54 0.9768 27.44 24.72 0.9775 28.70 23.06 0.9755 30.51 24.32 0.9775 28.75 24.70 0.9801 26.40

ours 25.67 0.9806 20.18 26.06 0.9826 19.45 24.82 0.9826 19.52 25.53 0.9818 19.98 25.58 0.9840 18.49

300-shot
NM 25.12 0.9793 26.75 25.04 0.9793 28.16 23.76 0.9780 28.47 24.94 0.9795 27.84 24.64 0.9802 26.37

ours 25.73 0.9812 18.93 26.14 0.9834 18.37 25.03 0.9833 18.52 25.88 0.9827 18.58 25.78 0.9845 17.44

Table 2: Few-shot generalization comparison for novel view synthesis of novel actors with unseen poses on the AIST++ dataset.

term (generated by the skinning weight network).
Deformation Network. The deformation network takes

the concatenated K pixel-aligned local feature, body pose
vector, and the sampled point in the category-level canon-
ical space as input and transforms it into a position in the
instance-level canonical space. Specifically, the final loca-
tion in the instance-level canonical space is modeled by a
combination of the xc and a residual term (output from the
deformation network). The network is composed of 6 fully
connected layers with ReLU activation functions.

Rendering Network. The rendering network takes as
input the point in the instance-level canonical space. As
shown in Figure 1, the pixel-aligned local features and the
SMPL local features, and output color and density. The
pixel-aligned local features and SMPL features are first
passed through separate linear layers to form two 256-dim
individual embedding. These features are then passed to the
following MLP together with the coordinate embedding, to
obtain the final predictions. The network consists of multi-
ple fully connected layers with ReLU activations.

4. Implementation Details

Dataset. We test ActorsNeRF on two benchmark
datasets: the ZJU-MoCap dataset and the AIST++ Dataset.

The ZJU-MoCap Dataset dataset contains 10 human sub-

jects recorded from 21/23 multi-view cameras. We use the
camera projections, body poses, and segmentations pro-
vided by the dataset. Three subjects (person 387, person
393, person 394) were designated as held-out data, while
the remaining seven were used for training. ‘camera1’ is
used for learning, whereas other views were solely used
for evaluation. Each training video contains 550 frames
that cover the person from various angles. For the few-
shot experiments, the few-shot support set images are uni-
formly selected from the a consecutive 300-frame video se-
quence captured from ‘camera1’. For example, for the 5-
shot setting, the 5 support set frames were frame0, frame75,
frame150, frame225, frame300, respectively. For evalua-
tion, the novel poses are sampled every 10 frames from the
rest of the video (frame301-frame550).

The AIST++ Dataset is a collection of dance motion
data consisting of 30 human subjects performing various
dances, captured from 9 multi-view cameras. We utilized
the camera projections, body poses provided by the dataset
and use PointRend to acquire foreground masks. We ran-
domly select 30 action sequences, and split the dataset with
25 actors for training and the remaining 5 actors (person
16-20) for evaluation. ‘camera1’ is used for learning and
other views (except ‘camera9’) are used for evaluation. For
each monocular video, starting from frame 200, we used
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Person 387 Person 393 Person 394
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeuMan 24.10 0.9388 78.94 25.33 0.9386 78.99 26.33 0.9422 76.42
Ours 26.19 0.9542 50.88 26.75 0.9546 47.02 27.84 0.9578 44.77

Table 3: Short-video generalization comparison for novel views of novel actors with unseen poses on the ZJU-MoCap dataset.
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Figure 1: Rendering network architecture.

the following 500 frames sampled every 4 frames to build
the dataset. For the few-shot experiments, the few-shot sup-
port set images were selected from a consecutive 300-frame
video sequence captured from ‘camera1’. Specifically, ex-
cept for 5 frames that are mannually selected that roughly
covered the person from both front and back, others are uni-
formly sampled images. During the evaluation stage, novel
poses were sampled every 10 frames from the rest of the
video.
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Figure 2: Qualitative comparison for 5-shot novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset. Our
method achieves high-quality animation with sharp boundary and details.
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Figure 3: Qualitative comparison for 10-shot novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset. Our
method achieves high-quality animation with sharp boundary and details.
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Figure 4: Qualitative comparison for 30-shot novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset. Our
method achieves high-quality animation with sharp boundary and details.

100-shot
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Figure 5: Qualitative comparison for 100-shot novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset. Our
method achieves high-quality animation with sharp boundary and details.
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Figure 6: Qualitative comparison for 10-shot novel view synthesis of novel actors with unseen poses on the AIST++ dataset. Our method
achieves high-quality animation with sharp boundary and details.30-shot
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Figure 7: Qualitative comparison for 30-shot novel view synthesis of novel actors with unseen poses on the AIST++ dataset. Our method
achieves high-quality animation with sharp boundary and details.
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Figure 8: Qualitative comparison for 100-shot novel view synthesis of novel actors with unseen poses on the AIST++ dataset. Our method
achieves high-quality animation with sharp boundary and details.
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