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1. Implementation Details
This section provides the implementation details for the

main two components of our approach namely multi-modal
auto labeling, and the open-vocabulary 3D object detector.

1.1. Unsupervised Multi-modal Auto Labeling

In our experiments, we use VEGETATION, ROAD,
STREET, SKY, TREE, BUILDING, HOUSE, SKYSCRAPER,
WALL, FENCE and SIDEWALK as text queries for defining
background categories, Cbg , which are excluded from auto
labeling. We also set the cosine similarities threshold εbg

to be 0.02. For the experiments in Section 4.2, and 4.3.1
of the main paper which consider moving-only objects, we
set a scene flow threshold of εsf = 1m/s (the same as [4]).
For bounding box proposals, we follow Najibi et al. [4] and
set neighborhood threshold to be 1.0m in DBSCAN. With-
out knowing the semantics of objects, it is challenging to
define the headings of all objects. For moving objects, we
align their headings with the object moving direction. For
static objects, we choose their headings such that they have
an acute angle with the heading of the autonomous driving
vehicle.

1.2. Open-vocabulary 3D Object Detection

Regarding the vision-language model, in this paper we
use the pre-trained OpenSeg model [1] coupled with the
BERT-Large text encoder in Jia et al. [3] without further
fine-tuning on any 2D or 3D autononmous driving datasets.

For the knowledge distillation, as discussed in Section
3.3.2 of the main paper, we directly distill the final 640 di-
mensional features of the OpenSeg model. However, for
memory and compute efficiency during training, we first re-
duce the dimensionality of the features to 64 using an in-
cremental PCA fitted to the whole unsupervised training
dataset. To evaluate the open-vocabulary detector on the
Waymo Open Dataset, we choose the vehicle and VRU as
categories of interest, for which the dataset has groundtruth.
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More specifically, we use CAR, VEHICLE, PARKED VE-
HICLE, SEDAN, TRUCK, BUS, VAN, MINIVAN, SCHOOL
BUS, PICKUP TRUCK, AMBULANCE, FIRE TRUCK to query
for the vehicle category and CYCLIST, HUMAN, PERSON,
PEDESTRIAN, BICYCLE to query for the VRU category.
We found that removing queries from this set will lead to
dropped mAPs. For the 3D detection experiments, we use
the same two-frame anchor-based PointPillars backbone as
previous work [4] for fair comparisons. We also use the
same set of detection losses to train a class-agnostic 3D
bounding box regression branch and an objectness score
branch, and supplement them with the new distillation intro-
duced in Section 3.3.2 of the main paper. We train models
on 64 TPUs, with a batch size of 2 per accelerator. We use
a cosine decay learning rate schedule and an initial learning
rate of 0.003 and train the models for a total of 43K itera-
tions.

2. Additional Qualitative Results

In the paper, we presented qualitative results demon-
strating that UP-VL can detect open-set objects using text
queries at inference (see Figure 1 and 4 of the main pa-
per). Additionally, we included a quantitative comparison
with the previous state-of-the-art, MI-UP [4], in Table 1
of the main paper. Here, we present qualitative compari-
son between our UP-VL detector (trained with distillation)
and MI-UP [4] detector in Figure S1. The top row shows
our UP-VL class-aware predictions where the blue and red
boxes represent the vehicle and VRU detections respec-
tively. On the bottom, we are showing the class-agnostic
predictions of the MI-UP model as green boxes. Compar-
ing column (a), first we can see that unlike MI-UP which
is unable to predict semantics, our UP-VL approach can
reliably distinguish between objects of vehicle and VRU
categories. Moreover, UP-VL can detect many of the ob-
jects which were completely missed or grouped together by
MI-UP. In column (b), we also mark static objects in the
bottom row. Comparing this column highlights another ad-
vantage of our approach. While MI-UP is limited to detect-
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Figure S1. Comparison of our UP-VL with prior work MI-UP [4]. Comparatively, our UP-VL (a) localizes objects and classifies them, (b)
detects both moving and static objects, (c) produces fewer false positives. Best viewed in color. Box colors: blue for vehicle, red for VRU,
green for class-agnostic.

Table S1. Effect of hyperparameters of εbg and rbg .

εbg
3D AP mAP rbg

3D AP mAPVeh VRU Veh VRU

0.10 28.7 12.3 20.5 50% 20.7 7.5 14.1
0.05 29.7 14.1 21.9 90% 27.3 11.1 19.2
0.02 30.2 14.7 22.4 99% 30.2 14.7 22.4
0.00 29.9 14.3 22.1 100% 30.1 14.6 22.3

ing moving-only objects by design, UP-VL is able to detect
static objects as well. Lastly, by comparing column (c), one
can see that our UP-VL approach can significantly reduce
the false positives on cluttered parts of the scene, showing
yet another advantage of our approach compared to the prior
work on unsupervised 3D object detection in autonomous
driving.

3. Effect of Hyperparameters

In this subsection, we perform an ablation study on the
effect of the hyper-parameters introduced in Algorithm 1 of
the main paper. More specifically, εbg which is used as a
threshold on the computed cosine similarities to define the
background points, and rbg which represents a threshold on
the required ratio of background points within a box pro-
posal to mark it as background and consequently filtering
the proposal. The ablation analysis is presented in Table S1.
First thing to notice is that our approach is fairly robust to
these hyper parameters when they are set in a reasonable
range. Moreover, comparing the middle rows with the first
and last rows demonstrates the effectiveness of introducing
these thresholding schemes in improving the mAP of the
model. Given these results, in all experiments in the paper
we set εbg = 0.02 and rbg = 0.99.
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Figure S2. Error analysis of false positives. Fractions of false-
positives that are caused by classification or localization errors.
Our analysis covers two scenarios: detecting moving objects only
and detecting objects in all motion states. And we examine both
vehicle and VRU categories.

4. Error Analysis

4.1. Quantitative Analysis

Section 4 in the main paper discusses the overall accu-
racy of our open-vocabulary 3D object detectors. In this
subsection, we will delve deeper into the analysis by break-
ing down the errors. One significant type of errors is false
positive detections, which occurs when the detected object
does not correspond to any ground truth object, given evalu-
ation thresholds. Following Hoiem et al. [2], we categorize
false positives into three types. Localization error arises
when a detected object belongs to the intended category but
has a misaligned bounding box (0.1 < 3D IoU < 0.4). The
remaining false positives, which have an IoU of at least 0.1
with an ground-truth object from a different category, are
classified as confusion with other objects. All other false
positives fall under the category of confusion with back-
ground. For each category, we count the “top-ranked” false
positives among the most confident N detections, where N
is selected to be half the quantity of ground truth objects in
that category. Results are presented in Figure S2. It should
be noted that given the decoupled design of our detector, the
localization error can be linked to our class-agnostic bound-
ing box prediction branch, and the classification error can be



linked to our distillation branch. As can be seen, for moving
objects (the left side of the figure), the localization error is
the bottleneck in performance. This is while, when we also
consider the static objects (the right side of the figure), the
share of the classification error noticeably increases. More-
over, as expected, we can see that confusion between the
categories (vehicles vs. VRUs) accounts for a very small
portion of the false positives. We believe this analysis sheds
light on the bottlenecks for further improvements of the pro-
posed approach.

4.2. Qualitative Analysis

In the previous subsection, we performed quantitative
error analysis on the available human annotations in the
dataset. Here, we qualitatively present some error patterns
of our method in the open-vocabulary setting where human
annotations are unavailable. Figure S3 illustrates some real-
world challenges in unsupervised open-vocabulary 3D de-
tection. One type of failure case is the detector failing to
generate a bounding box even though the point-wise cosine
similarity has captured the correct semantics from the user’s
query (e.g. “tram” in Figure S3). We believe this is because
such kind of large objects are rarely seen in the training data
and our detector requires more unsupervised training data
to confidently capture those objects. Another type of fail-
ure case is the mismatch between text queries and visual
features for semantically similar concepts. Like the second
example in Figure S3, where a text query of “truck” has
matched with a crane. We hypothesize that this might be
due to the similar appearance between cranes and construc-
tion trucks and the high co-occurrence of these two object
types in the real-world.

“truck”
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Figure S3. Failure cases. (a) Detector fails to generate very large
boxes for rare categories like ”tram” although the point-wise se-
mantic assignment is correct. (b) Text query of ”truck” wrongly
matches with an object of crane.
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