
A. Proofs
A.1. Proof of Proposition 4.1

Assuming the graphical model in Fig. 3 and the non-
informative prior, we can describe the posterior p(z|X, θ) ∝
p(X|z, θ)p(z) as the PoE of single-modal generative models;

p(z|X, θ) ∝
M∏
j=1

p(xj |z, θ). (34)

Then, the substitution of the Bayes’ theorem relation
p(xj |z, θ) ∝ p(z|xj , θ)p(xj |θ) into Eq. (34) derives
Eq. (15), where p(xj |θ) is absorbed into ηθ.

A.2. Proof of Claim. 4.3

Substituting Eqs. (19) and (20) into Eq. (11) yields;

Jalign ∝
∑
i

Eδ(z−fϕ(xi))[ηθ
∏
j

logCvMF(κ)e
κgθ(xj)

Tz]

+≃
∑
i,j

Eδ(z−fϕ(xi))[gθ(xj)
Tz] =

∑
i,j

gθ(xj)
Tfϕ(xi),

(35)

where κ and CvMF(κ) are ignored as they are defined to be
constants.

A.3. Proof of Claim. 4.5

Substituting Eqs. (16) and (15) into Eqs. (11) and (12)
results in;

Jalign + Juniform

= Eq(z|X,ϕ)

[
log

p(z|X, θ)∫
p(z|X, θ)pD(X)dX

]
(36)

+≃ Eq(z|X,ϕ)

[
log

∏
j p(z|xj , θ)∫ ∏

j p(z|xj , θ)pD(xj)dX

]
(37)

= Eq(z|X,ϕ)

log∏
j

p(z|xj , θ)∫
p(z|xj , θ)pD(xj)dxj

 (38)

=
∑
i,j

Eq(z|xi,ϕ)

[
log

p(z|xj , θ)∫
p(z|xj , θ)pD(xj)dxj

]
. (39)

By applying Def. 4.2 and approximating the integral in
Eq. (39) by the Monte Carlo method using a mini-batch
B, we can derive Eq. (26).

B. Implementation details
The implementation details of networks, pre-training, and

linear evaluation are described in this section. Each experi-
ment needs four NVIDIA V100 GPUs.

Experimental settings for networks; The architecture of
the encoder f and the predictor h of VI-SimSiam are almost
identical to those of DirectPred [50]. We use Resnet18 [21]
as a backbone network of the encoder f , unlike the settings
of DirectPred. We also add the kappa predictor to predict
κ. The kappa predictor consists of an MLP, which has two
fc layers. Its input layer has 512 dimensions and its output
layer has 1 dimension (κ). BN and ReLU activation are
applied to its input layer, while soft plus activation is applied
to its output layer.

Experimental settings for pre-training; We use
momentum-SGD for pretraining. The learning rates for
VI-SimSiam, SimSiam, and DINO are 0.1, 0.2, and 0.03,
respectively. The weight decay is 1e-4, and the SGD momen-
tum is 0.9. The learning rate has a cosine decay schedule for
SimSiam and DINO. A learning rate scheduler is not used
for VI-SimSiam. The batch size is 512 for VI-SimSiam and
SimSiam. It is 64 for DINO. The number of dimensions
of the latent variable is 2048. In DINO, the temperature
parameter for the teacher is 0.04, while that for the student
is 0.1. The center momentum rate is 0.9. We do not use
the momentum encoder as a teacher network in pre-training
DINO.

We incorporate multi-crop [3] into augmentation. Multi-
crop uses two types of views for training: standard and
small-resolution views. Standard resolution views are gener-
ated by the same augmentation setting as that of SimSiam.
SimSiam has five different augmentation types (blur, color
jitter, flip, grayscale and random crop). Its strength is ran-
domly determined with each applied augmentation. Fig 8
shows examples of augmented views. Low-resolution views
are generated by the augmentation setting of SimSiam with
modified random crop and resize parameters. In the augmen-
tation setting of low-resolution views, the random crop scale
is from 0.05 to 0.2, and the size is 96 × 96. We use two
standard-resolution views and six low-resolution views per
image in each experiment.

Experimental settings for linear-evaluation; We use
LARS [60] as an optimizer for the linear evaluation. The
learning rate is 1.6. The weight decay is 0.0, the SGD
momentum is 0.9, and the batch size is 512. The image
augmentation and preprocessing are referred to as those of
SimSiam. We train 100 epochs and test the model with the
highest Top-1 accuracy for the validation set. When we train
it, we crop a random portion of an image and resize it to
224×224. The area of a random cropped image is from 0.08
to 1.0 of the area of the original image. When we validate
and test it, we resize an image to 256 × 256 and crop the
center 224× 224.

ImageNet100 is split into only training and validation.
Using this dataset, we set about 20% of the training split as
a local validation split for tuning parameters.

Experimental settings for k-nearest neighbor classifi-

original random crop color jitter

grayscale blur flip

Figure 8: Examples of augmented images.

0 500 1000 1500 2000
Concentration

0

200

400

600

800

1000

0.0

0.2

0.4

0.6

0.8

1.0

correct
incorrect
accuracy
logistic

Figure 9: Histogram of the estimated concentration κ. The solid
red line shows the Top-1 accuracy for each κ’s range. The dotted
line shows the logistic regression curve.

cation; We tuned the parameter k by calculating the top-1
accuracy of the local validation split for 200 ks. k is deter-
mined by Bayesian optimization each time.

C. Additional quantitative analysis of uncer-
tainty

We investigate the effects of uncertainty on a classifica-
tion task using methods other than AUROC. Fig. 9 shows κ
histograms for correct and incorrect samples and plots each
kappa range’s Top-1 accuracy and the logistic regression
curve. We use κ’s predicted by the VI-SimSiam trained 500
epochs on ImageNet100 and labels predicted by linear classi-
fiers with pre-trained features trained on 100 epochs. As the
coefficient of κ in logistic regression is positive (p < 0.01)6,
the estimated κ increases, and thus, the greater the ease of
estimating the class of the input image.

For each estimated label correctness, the mean and stan-
dard deviation of estimated κ is also given in Table 4. The
mean of the κ of image features with the incorrect label is
lower than those with the correct label.

6How to calculate the p-value is mentioned in Appx. J.

Table 4: Mean and standard derivation of κ for correct and incorrect
samples.

Correct Incorrect
890.52±140.53 805.06±131.20

entropy = 5.8702

Image with low entropy estimated

Image with high entropy estimated

entropy = 0.0792 entropy = 0.0490 entropy = 0.0003

entropy = 5.5898 entropy = 5.5641

Figure 10: Input images and the entropy of the latent variable.
The greater the entropy, the higher the uncertainty. The images with
high estimated entropy, i.e., high uncertainty in the representations,
appear to have less salient features than the others.

D. Evaluation of uncertainty estimation of
DINO

We report that the entropy of the latent variable is related
to the accuracy of the linear evaluation in Sec 6.4. In the
current section, we qualitatively evaluate the uncertainty
estimation of DINO by comparing entropies and images.
Fig. 10 shows the images for which entropy is in the top and
bottom 1%. When entropy is high, i.e., the uncertainty of
the latent variable is predicted to be high, it is difficult to
understand the features in the image. This result shows that
DINO can learn the uncertainty of the latent variable, the
same as VI-SimSiam.

E. Linear evaluation with κ

We attempt a new linear evaluation using the uncertainty
parameter κ, which is related to the accuracy of linear evalu-
ation. Therefore, we use the image with the highest κ from
several randomly augmented images when testing. We use
30 augmented images. A random crop is used for augmenta-
tion. The Top-1 accuracy and the average of κ in the model
for each epoch are shown in Table 5. This result shows a
slight improvement in Top-1 accuracy. Although there is no
significant change in the accuracy of the dataset used in this
study, it can be effective in datasets where uncertainty can
be reduced by image processing, such as noisy images.

Table 5: Top-1 accuracy and the average of κ Linear evaluation
using the uncertainty parameter κ. “w/o κ” is a normal linear
evaluation. “w κ” is a linear evaluation with κ which uses the
image that predicted the highest κ from 30 augmented images in
the test. When we evaluate the “w κ” setting, we test in triplicate
and calculate their mean and standard deviation.

Method 100 epochs 200 epochs 500 epochs

Top-1 accuracy
w/o κ 73.32 76.74 77.48
w κ 73.51±0.43 77.36±0.04 77.61±0.17

Average of κ
w/o κ 867.71 811.47 848.23
w κ 917.81±0.36 852.15±0.42 893.12±0.24

Table 6: Top-1 accuracies of linear evaluation on Cifar10.

Method 100 epochs 200 epochs 500 epochs

SimSiam 77.43 85.95 91.96
VI-SimSiam 89.92 93.02 92.75

Table 7: Linear classification Top-1 accuracy in transfer learning.
We use pre-trained 100 epochs of representations on ImageNet100
for each method. For the 200 and 500 epochs, the results of one
experiment are presented, and for the 100 epochs, the mean and
standard deviation of three experiments are given.

Method epoch Flowers Food DTD Aircraft SUN397 Pet Cars

SimSiam [6] 100 14.8±0.5 46.7±1.6 35.7±7.1 10.4±1.3 39.5±1.8 40.5±2.5 8.5±1.5

VI-SimSiam 100 64.5±0.5 48.4±0.6 51.8±0.5 16.2±1.3 46.4±0.3 50.0±0.9 13.7±0.4

SimSiam 200 15.6 55.8 55.8 16.0 51.2 54.5 16.2
VI-SimSiam 200 65.3 49.4 53.7 17.4 47.4 50.8 14.7
SimSiam 500 28.0 59.2 58.4 17.7 54.0 56.9 18.6
VI-SimSiam 500 64.8 46.1 51.7 17.9 47.9 50.9 15.4

F. Linear evaluation on Cifar10 dataset

We conduct self-supervised pre-training with Cifar10 [30]
dataset without labels to learn image representations using
SimSiam and VI-SimSiam at 100, 200, and 500 epochs.
Top-1 accuracy is the evaluation metric. Table 6 shows
Top-1 accuracy on the validation split of ImageNet100. VI-
SimSiam achieves a competitive result to SimSiam in all
epochs.

G. Transfer learning

We evaluate the effectiveness of the representations for
transfer learning on some image classification datasets (Flow-
ers [38], Food [2], DTD [8], Aircraft [34], SUN397 [58, 57],
Pet [43], and Cars [29]). We use representations by models
pre-trained at 100 epochs on ImageNet100 dataset. The im-
plementation details are presented in Appx. B. We report the
Top-1 and Top-5 accuracy of VI-SimSiam and SimSiam in
Table 7. Our method outperforms SimSiam on all datasets at
100 epochs and on some datasets at 200 and 500 epochs.

Table 8: Top-1 accuracy under semi-supervised learning on Im-
ageNet100. We pretrain models on ImageNet100 without labels
for each method. Then, we fine-tune them on 1 % or 10 % of
ImageNet100 with labels. For the 200 and 500 epochs, the results
of one experiment are presented, and for the 100 epochs, the mean
and standard deviation of three experiments are given.

Method epoch 1% 10%

scratch 100 10.8± 0.4 36.8± 0.6

SimSiam [6] 100 33.8± 1.5 64.6± 0.5

VI-SimSiam 100 53.5± 0.5 68.8± 0.0

SimSiam 200 49.7 71.2
VI-SimSiam 200 56.2 70.9
SimSiam 500 42.3 73.3
VI-SimSiam 500 58.4 72.0

Table 9: Top-1 accuracy of linear evaluation. For all methods, we
pretrain a model of 200 epochs. We set a batch size to 512 for
Simsiam and VI-SimSiam and 64 for DINO.

SimSiam VI-SimSiam DINO

Top-1 accuracy 78.49 76.31 76.30

H. Semi-supervised learning
We evaluate the performance of the proposed method

in a more realistic experimental setting, semi-supervised
learning. Considering the excessive cost of labeling and the
situation where only some data are labeled, we use labels
for only 1% or 10% of the total ImageNet100. After pre-
training networks without labels at 100 epochs, we fine-tune
the entire networks at 200 epochs with labeled data, for a
batch size of 128. Table 8 presents the Top-1 accuracy of
each setting. Herein, VI-SimSiam consistently outperformed
SimSiam for 1% of labels.

I. Linear evaluation of DINO
We demonstrate a linear evaluation of DINO. We use

ImageNet100 dataset and set the number of epochs to 200.
We set a batch size to 64 for DINO, unlike SimSiam and VI-
SimSiam. Table 9 presents Top-1 accuracy with SimSiam,
VI-SimSiam, and DINO.

J. Test of the relationship between two variables
This section describes whether a variable x is related to a

variable y by testing the score a. Scores are assumed to be
a relationship between two variables, e.g., coefficients from
linear or logistic regression, and AUROC scores, among
others.

First, a score is obtained from X = {x1, x2, ..., xN} and
Y = {y1, y2, ..., yN}. We then set the null hypothesis to
H0 and the alternative hypothesis to H1. Set H0 to mean
that X and Y are unrelated and H1 to mean that they are
related. For example, if you want to test whether there is

SimSiam

200epoch
SimSiam

500epoch
VI-SimSiam

200epoch
VI-SimSiam

500epoch

0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
 s

im
ila

ri
ty

Figure 11: Variation of cosine similarity medians of 100000 ran-
dom augmented image pairs. Error bars indicate the upper and
lower quartiles.

a positive proportion, set H0 : a ≤ 0, H0 : a > 0. Then,
Y ′
j = {y′j,1, y′j,2, ..., y′j,N} is obtained by random shuffling

Y . This process creates a set of M dummy objective vari-
ables Y ′

1 , Y
′
2 , ..., Y

′
M . M dummy scores a′1, a

′
2, ..., a

′
M are

obtained from each Y ′
j and X . We decide whether to reject

H0 or not by regarding M dummy scores as a test statistic.

K. Comparison of cosine similarity
In this section, we discuss the performance of the linear

evaluation by comparing cosine similarity. When the cosine
similarity is low during training, SimSiam only learns to
increase the cosine similarity, while VI-SimSiam learns to
decrease κ. The median of cosine similarity of 100000 ran-
dom augmented image pairs is shown in Fig 11. Thus, the
cosine similarity of VI-SimSiam is lower than that of Sim-
Siam. In some cases, it is assumed that VI-SimSiam learns
to minimize the loss by reducing κ rather than increasing
the cosine similarity for inputs with representations that are
difficult to predict.

L. Additional Experimental Results
In this section, we show another result of § 6.2. Fig. 12

shows twenty images estimated to have the highest κ, i.e.,
the lowest uncertainty. On the other hand, Fig. 13 shows
twenty images estimated to have the lowest κ, i.e., the high-
est uncertainty.

Figure 12: Twenty images estimated to have the highest κ.

Figure 13: Twenty images estimated to have the lowest κ.

