
Supplementary Material for
“Cyclic Test-Time Adaptation on Monocular Video

for 3D Human Mesh Reconstruction”

In this supplementary material, we present more techni-
cal details and additional experimental results that could not
be included in the main manuscript due to the lack of space.
The contents are summarized below:

• S1. Visualization in video format
• S2. Results on other HMRNet architectures
• S3. Online adaptation scenario
• S4. Details of MDNet
• S5. Effect of pre-training HMRNet
• S6. MPJPE curves of diverse video sequences
• S7. Limitations
• S8. More qualitative results

S1. Visualization in video format
We provide supplementary video (CycleAdapt.mp4)

that consists of three parts. The first part shows intermedi-
ate adaptation results during the cyclic adaptation process.
Before adaptation, the HMRNet fails to produce plausible
reconstruction results due to domain gap between training
and test data. Our cyclic adaptation progressively adapts
both the HMRNet and the MDNet as cycle repeats. The
second part compares our proposed CycleAdapt with Dyn-
aBOA [4] and DAPA [13]. For the comparisons, we fol-
lowed the released codes of the previous test-time adapta-
tion methods. The last part provides results of CycleAdapt
on Internet videos. We obtained human bounding boxes and
2D human keypoints for the test-time adaptation with Al-
phaPose [3].

S2. Results on other HMRNet architectures
Table S1 demonstrates that our CycleAdapt also signif-

icantly improves the accuracy of other HMRNet architec-
tures [14, 10] in the test-time adaptation scenario. In the
first and second rows of each block, we train HMRNet only
using source dataset (i.e., Human3.6M [7]) and evaluate it
on each dataset. In the third row of each block, we ap-
ply our test-time adaptation framework by employing Hu-
man3.6M [7] as source dataset and 3DPW [12] as target
dataset. Without the adaptation, all of HMRNet architec-

HMRNet
architecture Evaluation data MPJPE PA-MPJPE MPVPE

SPIN
[9]

Human3.6M 99.1 65.4 -

3DPW before adapt. 230.3 123.4 253.4

3DPW after adapt. 87.7 53.8 105.7

PyMAF
[14]

Human3.6M 83.5 52.0 -

3DPW before adapt. 309.1 152.8 336.7

3DPW after adapt. 98.5 57.2 122.7

Pose2Pose
[10]

Human3.6M 86.9 56.9 -

3DPW before adapt. 331.8 157.5 364.2

3DPW after adapt. 108.1 55.8 121.9

Table S1. Quantitative comparisons of CycleAdapt with
different HMRNet architectures on 3DPW [12].

tures suffer from domain gap problem and show poor per-
formance on 3DPW, despite their superior performance on
Human3.6M. Our CycleAdapt effectively adapts each of the
networks with substantial improvements.

Meanwhile, we can observe that errors of PyMAF [14]
and Pose2Pose [?]moon2022accurate after adaptation are
slightly higher than those of SPIN [9]. We conjecture the
reason is that PyMAF and Pose2Pose learn more domain-
specific knowledge (e.g., appearance) than SPIN and are
more vulnerable to the domain gap problem. Accordingly,
PyMAF and Pose2Pose show better performance on Hu-
man3.6M than SPIN (the first row of each block), but they
show inferior performance on 3DPW (the second row of
each block). Despite the various initial errors on 3DPW,
our CycleAdapt uniformly reduces the MPJPE of SPIN, Py-
MAF, and Pose2Pose by 38%, 32%, and 33%.

S3. Online adaptation scenario

Table S2 shows that our CycleAdapt also achieves the
best performance in online adaptation scenario, compared
to BOA [5] and DynaBOA [4]. Since DAPA [13] does
not support the online adaptation scenario, we only com-
pare our CycleAdapt with BOA and DynaBOA. In the on-
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Methods MPJPE PA-MPJPE MPVPE

Base model (pre-trained on H36M) 230.3 123.4 253.4

BOA [5] 137.6 76.2 171.8

DynaBOA [4] 135.1 73.0 168.2

CycleAdapt (Ours) 90.3 55.2 107.0

(a) Source - Human3.6M / Target - 3DPW

Methods MPJPE PA-MPJPE MPVPE

Base model (pre-trained on SURR) 193.2 92.0 216.5

BOA [5] 102.5 61.7 124.7

DynaBOA [4] 109.8 62.4 139.9

CycleAdapt (Ours) 90.0 55.1 106.8

(b) Source - SURREAL / Target - 3DPW

Table S2. Comparison between different test-time adapta-
tion methods in online adaptation scenario on 3DPW [12].
OpenPose [2] is used to obtain 2D human keypoints from
test images for the adaptation.

line adaptation scenario, test samples arrive in sequential
order, and thus samples from future times cannot be uti-
lized for adaptation. In this scenario, the accuracy of our
CycleAdapt slightly drops as the MDNet cannot view hu-
man motion in the future. Nevertheless, CycleAdapt still
outperforms BOA and DynaBOA.

S4. Details of MDNet
Architecture. Figure S1 shows the detailed architecture
of the MDNet in our framework. Motivated by recent re-
search [6] on human motion modeling for human motion
prediction, we configure the MDNet with fully-connected
layers and layer normalization [1]. For all layers, their in-
put dimension is equal to their output dimension. The MD-
Net initially forms a matrix Θ ∈ RT×H by concatenating
input SMPL pose parameters {θ0, . . . , θT−1} that are ran-
domly masked, where T = 49 and H = 144 denote the
temporal length of the pose parameter sequence and the
dimension of the pose parameter, respectively. The ma-
trix is passed into a fully-connected layer followed by a
transpose operation. The transposed matrix is forwarded
into a series of M blocks (M = 4), which also consist of
fully-connected layers and layer normalization. Finally, we
perform the last transpose operation followed by a fully-
connected layer to obtain denoised SMPL pose parameters
Θ′ = {θ′0, . . . , θ′T−1}.
Pre-training scheme. To pre-train the MDNet, we uti-
lize the MoCap dataset (i.e., Human3.6M [7]), which con-
tains accurate 3D labels. With the MoCap dataset, we add
random gaussian noise into the SMPL pose parameters to
mimic noisy human meshes reconstructed from HMRNet.
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Figure S1: The pipeline of MDNet. FC and LN denote
fully-connected layer and layer normalization [1], respec-
tively.

The mean and standard deviation of the random gaussian
noise are set to 0 and 0.01, respectively. We forward the pa-
rameters with synthesized noises into MDNet and construct
a loss function as follows:

LMD =
1

T

T−1∑
t=0

∥θ′t − θ∗t ∥1, (1)

where the asterisk denotes groundtruth from the MoCap
dataset.

S5. Effect of pre-training HMRNet
Table S3 shows that pre-training HMRNet on the source

dataset (i.e., Human3.6M [7]) is necessary for the test-time
adaptation scenario. Before adaptation, the HMRNet pre-
trained on the source dataset (the third row) shows simi-
lar performance to HMRNet with random initialization (the
first row). This is due to the domain gap between the source
and target dataset, as described in Section 1. Although the
effect of pre-training is not directly reflected on accuracy
before adaptation, pre-training on source dataset (the fourth
row) is considerably effective compared to random initial-
ization (the second row), in the test-time adaptation sce-
nario. This is because the pre-trained HMRNet on source
dataset learned prior of human structure that is helpful in
3D human mesh reconstruction. Our test-time adaptation
framework effectively takes advantage of the learned hu-
man prior during adaptation, which boosts the performance
of test-time adaptation.

S6. MPJPE curves of diverse video sequences
Figure S2 shows that the MPJPE curve of MDNet is

mostly below that of HMRNet for most cycles, similar
to Figure 4. Such consistent tendency of the two curves
demonstrates that the outputs of MDNet can serve as reli-
able guidance as supervision targets for HMRNet, during
the adaptation.



“downtown_cafe_00”

adaptation cycle

adaptation cycle

adaptation cycle

M
PJ

PE
 (m

m
)

M
PJ

PE
 (m

m
)

M
PJ

PE
 (m

m
)

“downtown_warmWelcome_00”

“downtown_walkUphill_00”

“downtown_windowShopping_00”

M
PJ

PE
 (m

m
)

adaptation cycle

“office_phoneCall_00”

adaptation cycle

M
PJ

PE
 (m

m
)

“outdoors_fencing_01”

adaptation cycle

M
PJ

PE
 (m

m
)

Figure S2: MPJPE curves during test-time adaptation for different video sequences in 3DPW [12].

Pre-training Test-time
adapt. MPJPE PA-MPJPE MPVPE

Random init.
✗ 272.0 111.7 324.0

✓ 140.6 89.6 163.3

Pre-training on H36M
✗ 230.3 123.4 253.4

✓ 87.0 52.4 104.1

Table S3. Effect of pre-training HMRNet on test-time adap-
tation. 3DPW [12] is used for the adaptation.

S7. Limitations
Figure S3 shows that our framework often struggles to

adapt on a test video when the video contains extremely fast
human motion. Given fast human movements, the human
meshes reconstructed from HMRNet dramatically change
as the timestamp progresses. For MDNet, it is highly am-
biguous to distinguish between dramatically changing hu-
man meshes and noisy human meshes. Thus, the MDNet
often produces over-smoothed outputs when adaptation on
such challenging test video. Due to the difficulty, test-time
adaptation with fast human motion can be a future research
direction.

S8. More qualitative results
We provide more qualitative result comparisons on the

3DPW [12] test set and the InstaVariety [8] test set. Fig-
ure S4 and S5 show that our CycleAdapt produces far more
accurate results compared to previous test-time adaptation
methods.

License of the Used Assets
• Human3.6M dataset [7]’s licenses are limited to academic

use only.
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Figure S3: Failure cases of our framework.

• SURREAL dataset [11] is available for the sole purpose
of performing non-commercial scientific research.

• 3DPW dataset [12] is released for academic research only
and it is free to researchers from educational or research
institutes for non-commercial purposes.

• InstaVariety dataset [8] is released for non-commercial
academic use.

• BOA codes [5] are released for academic research only
and it is free to researchers from educational or research
institutes for non-commercial purposes.

• DynaBOA codes [4] are released for academic research
only and it is free to researchers from educational or re-
search institutes for non-commercial purposes.

• DAPA codes [13] are MIT licensed.

https://github.com/syguan96/BOA
https://github.com/syguan96/DynaBOA
https://github.com/zzweng/dapa_release
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Figure S4: Comparison of HMRNet’s accuracy between different test-time adaptation methods, when using Human3.6M [7]
as source dataset and 3DPW [12] as target dataset. OpenPose [2] is used to obtain 2D human keypoints from test images for
the adaptation.
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Figure S5: Comparison of HMRNet’s accuracy between different test-time adaptation methods, when using Human3.6M [7]
as source dataset and InstaVariety [8] as target dataset. OpenPose [2] is used to obtain 2D human keypoints from test images
for the adaptation.
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