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Summary: This supplementary material contains ad-
ditional method explanations, experiments, and results
of Mask2Anomaly. These include:

• explanation of anomaly segmentation evaluation met-
rics;

• Mask2Anomaly results on validation sets;
• outlier loss comparison and analysis;
• training loss functions of Mask2Anomaly ;
• an analysis of various inference techniques applied to

a Mask2Anomaly;
• performance stability of Mask2Anomaly;
• additional results and supplementary video.

A. Evaluation Metrics
Pixel-Level: For pixel-wise evaluation, let Y ∈ {Ya, Yna}
be the pixel level annotated ground truth labels for image χ
containing anomaly. Ya and Yna represents the anomalous
and non-anomalous labels in the ground-truth. Assume,
Ŷ (γ) is the model prediction obtained at thresholding f(x)
at γ. Then, we can write precision and recall equations as:

precision(γ) =
|Ya ∩ Ŷa(γ)|

|Ŷa(γ)|
(1)

recall(γ) =
|Ya ∩ Ŷa(γ)|

|Ya|
(2)

and, AuPRC can be approximated as:

AuPRC =

∫
γ

precision(γ)recall(γ) (3)

The AuPRC works well for unbalanced datasets making it
particularly suitable for anomaly segmentation since all the
datasets are significantly skewed. Next, we consider the
False Positive Rate at a true positive rate of 95% (FPR95),
an important criterion for safety-critical applications that is
calculated as:

FPR95 =
|Ŷa(γ

∗) ∩ Yna|
|Yna|

(4)

where γ∗ is a threshold when the true positive rate is
95%.

Component-Level: SMIYC [2] introduced a few
component-level evaluation metrics that solely focus on de-
tecting anomalous objects regardless of their size. These
metrics are important to be considered because pixel-level
metrics may not penalize a model for missing a small
anomaly, even though such a small anomaly may be im-
portant to be detected. In order to have a component-
level assessment of the detected anomalies, the quantities to
be considered are the component-wise true-positives (TP ),
false-negatives (FN ), and false-positives (FP ). These
component-wise quantities can be measured by considering
the anomalies as the positive class. From these quantities,
we can use three metrics to evaluate the component-wise
segmentation of anomalies: sIoU, PPV, and F1∗. Here we
provide the details of how these metrics are computed, using
the notation K to denote the set of ground truth components,
and K̂ to denote the set of predicted components.

The sIoU metric used in SMIYC [2] is a modified ver-
sion of the component-wise intersection over union pro-
posed in [17], which considers the ground-truth components
in the computation of the TP and FN . Namely, it is com-
puted as

sIoU(k) =
|k ∩ K̂(k)|

|k ∩ K̂(k)\A(k)|
, K̂(k) =

⋃
k̂∈K̂, k̂∩k ̸=∅

k̂

(5)
where A(k) is an adjustment term that excludes from the
union those pixels that correctly intersect with another
ground-truth component different from k. We refer the
reader to [2] for more details on this term. Given a thresh-
old τ ∈ [0, 1], a target k ∈ K is considered a TP if
sIoU(k) > τ , and a FN otherwise.

The positive predictive value (PPV) is a metric that mea-
sures the FP for a predicted component k̂ ∈ K̂, and it is
computed as

PPV(k̂) =
|k̂ ∩ K̂(k)|

|k̂|
(6)

A predicted component k̂ ∈ K̂ is considered a FP if
PPV (k̂) ≤ τ . Finally, the F1∗ summarizes all the



FS L&F FS static
Methods AuPRC↑ FPR95 ↓ AuPRC↑ FPR95 ↓

Max Softmax [8] 4.59 40.59 19.09 23.99
Max Logit [8] 14.59 42.21 38.64 18.26

Entropy [8] 10.36 40.34 26.77 23.31
Energy [14] 25.79 32.26 31.66 37.32

SynthCP [20] 6.54 45.95 23.22 34.02
SynBoost [6] 40.99 34.47 48.44 47.71

SML [9] 36.55 14.53 48.67 16.75
Deep Gambler [15] 39.77 12.41 67.69 15.39
Dense Hybrid [7] 63.80 6.10 60.20 4.90

PEBEL [19] 59.83 6.49 82.73 6.81
Mask2Anomaly (Ours) 69.41 9.46 90.54 1.98

Table 1: Fishyscapes Validation Results: The best and
second best results are bold and underlined, respectively.

component-wise TP , FN , and FP quantities by the fol-
lowing formula:

F1∗(τ) =
2TP (τ)

2TP (τ) + FN(τ) + FP (τ)
(7)

B. Results on Fishyscapes and SMIYC validation sets
To provide a comprehensive evaluation, we have bench-
marked Mask2Anomaly results on the Fishyscapes and
SMIYC validation sets as presented in Tab. 1 and Tab. 2,
respectively. We can observe that Mask2Anomaly out-
performs all the prior methods by a large margin on both
benchmarks. Interestingly, maximized entropy and dense
hybrid show the best AuPRC for SMIYC-RO21 and FPR95

for FS L&F, respectively. However, overall Mask2Anomaly
gives the best performance on all the benchmarks. This
suggests that mask-based architecture offers better general-
izability in comparison to per-pixel architecture due to its
intrinsic property of encouraging objectness.

C. Outlier Loss Comparision
We now empirically demonstrate why the proposed mask
contrastive loss, a margin-based loss, performs better at
anomaly segmentation than binary cross-entropy loss. We
train Mask2Anomaly with MOOD using binary-cross en-
tropy. The new loss based on the binary cross entropy can
be written as:

LBCE = MOOD log(lN )+ (1−MOOD) log(1− lN ) (8)

where, lN = − K
max
k=1

(
softmax(C)T · sigmoid(M)

)
(9)

lN is the negative likelihood of in-distribution classes
calculated using the class scores C and class masks
M . Figure 1 illustrates the anomaly segmentation per-
formance comparison on FS L&F validation dataset be-
tween the Mask2Anomaly when trained with the binary
cross entropy loss and mask contrastive loss, respectively.
We can observe that the mask contrastive loss achieves

SMIYC-RA21 SMIYC-RO21
Methods AuPRC↑ FPR95 ↓ AuPRC↑ FPR95 ↓

Max Softmax [8] 40.4 60.2 43.4 3.8
ODIN [12] 46.3 61.5 46.6 4.0

Mahalanobis [11] 22.5 86.4 25.9 26.1
MC Dropout [16] 29.2 77.9 7.9 43.8

Ensemble [10] 16.0 80.0 4.7 98.3
Void Classifier [1] 39.3 66.1 9.8 43.6

Learning Embedding [1] 51.9 60.0 1.5 56.7
Image Resynthesis [13] 76.4 20.5 70.3 1.3

SynBoost [6] 68.8 30.9 81.4 2.8
Maximized Entropy [3] 80.7 17.4 94.4 0.4
Mask2Anomaly (Ours) 94.5 3.3 88.6 0.3

Table 2: SMIYC Validation Results: The best and second
best results are bold and underlined, respectively.

AuPRC: 63.23           FPR95: 71.59 AuPRC: 69.41           FPR95: 9.46

Binary Cross-Entropy Loss Mask Contrastive Loss 

In-distribution

out-of-distribution

In-distribution

out-of-distribution

Figure 1: Outlier Loss Comparision: To
train Mask2Anomaly on the outlier set, we find that
mask contrastive loss, which is a margin-based loss shows
better performance compared to the binary cross-entropy
loss. Both experiments are done on the FS L&F validation
set.

a wider margin between out-of-distribution(anomaly) and
in-distribution prediction while maintaining significantly
lower false positives.

D. Training Loss
Mask2Anomaly gives two sets of outputs: class scores (C)
and class masks (M ). To train M , we first pad the ground
truth mask Mgt with “no object” masks denoted by ϕ. Since
we assume M ≥ Mgt, padding the ground truth masks al-
low us one-to-one matching. Now, we use bipartite match-
ing to match the ground truth and the predicted masks, and
the assignment cost is given by:

Lmasks = λbceLbce + λdiceLdice (10)

where Lbce and Ldice are the binary cross entropy loss and
the dice loss calculated between the matched masks. λbce

and λdice are the loss weights that are both set to 5.0. To
train C, which indicates the semantic class of a mask, we
used the cross-entropy loss Lce. The total training loss is
given by:

L = Lmasks + λceLce (11)

with λce set to 2.0 for the prediction that matched with



SMIYC-RA21 SMIYC-RO21 FS L&F FS Static Road Anomaly Average
C M f(C).f(M) AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓
I I I 9.47 95.16 4.44 73.45 2.53 92.16 1.18 99.97 65.59 97.56 16.64 91.66

Softmax Softmax I 44.73 38.27 3.16 95.72 4.82 47.98 10.34 52.04 42.74 55.73 21.13 57.94
Sigmoid Sigmoid I 25.04 93.14 83.14 1.24 14.55 43.83 45.67 96.87 28.1 91.63 39.3 65.34
Sigmoid Softmax I 29.29 39.01 7.48 98.01 0.42 48.23 6.37 52.16 25.61 55.78 13.83 58.63
Softmax Sigmoid I 95.48 2.41 92.89 0.15 69.41 9.46 90.54 1.98 79.7 13.45 85.56 5.51
Softmax Sigmoid Softmax 94.55 3.31 88.59 0.36 70.8 32.66 88.96 2.22 78.3 15.54 84.24 10.81

Table 3: Mask2Anomaly Inference: we show various inference techniques on Mask2Anomaly for anomaly segmentation.
f(.) represents the function applied to class scores or masks. I is the identity function. The best results are in bold.

SMIYC-RA21 SMIYC-RO21 FS L&F FS Static Average σ

Methods AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC FPR95

Mask2Anomaly-S1 95.48 2.41 92.89 0.15 69.41 9.46 90.54 1.98 - -
Mask2Anomaly-S2 92.03 3.22 92.3 0.27 69.19 13.47 85.63 5.06 - -
σ(Mask2Anomaly) ± 2.44 ±0.57 ±0.42 ±0.08 ±0.16 ±2.84 ±3.47 ±2.18 ±1.62 ±1.41

Dense Hybrid-S1 52.99 38.87 66.91 1.91 56.89 8.92 52.58 6.03 - -
Dense Hybrid-S2 60.59 32.14 79.64 1.01 47.97 18.35 54.22 5.24 - -
σ(Dense Hybrid) ±5.37 ±4.76 ±9.00 ±0.64 ±6.31 ±6.67 ±1.16 ±0.56 ±5.46 ±3.15

Table 4: Performance stability in Mask2Former: we can observe that the average deviation in the performance of the
dense hybrid is significantly higher than Mask2Anomaly. σ denotes the standard deviation.

ground truth and 0.1 for ϕ, i.e. for no object. After training
the Mask2Anomaly for 90K iterations, we fine-tune the net-
work with the mask contrastive loss LCL. The new training
loss is written as:

LM2A = L+ LCL (12)

We perform all the training and inference on a single
Nvidia Titan RTX with 24GB memory.

E. Mask2Anomaly Inference
The per-pixel classification networks have a straightforward
inference as the network outputs a pixel-wise anomaly
map. However, in the case of a mask architecture, we get
a set of class scores C and a set of binary mask M . So,
we test various inference techniques on Mask2Anomaly
for anomaly segmentation, as shown in Table 3. We find
that the marginalization over class scores obtained after the
softmax and taking the sigmoid of the mask yields the best
results. Also, we observe that applying a softmax after the
marginalization to perform max-softmax [8] does not give
good results.

F. Performance stability on different outlier sets
Employing an outlier set to train an anomaly segmenta-
tion model presents a challenge because the model’s per-
formance can vary significantly across different sets of out-
liers. Here, we show that Mask2Anomaly performs simi-
larly when trained on different outlier sets.

We randomly chose two subsets of 300 MS-COCO
images (S1, S2) as our outlier dataset for train-
ing Mask2Anomaly and DenseHybrid. Table 4 shows

the performance of Mask2Anomaly and Dense Hybrid
trained on S1 and S2 outlier sets, along with the standard
deviation(σ) in the performance. We can observe that the
variation in performance for the dense hybrid is signifi-
cantly higher than Mask2Anomaly. Specifically, in dense
hybrid, the average deviation in AuPRC is greater than
300%, and the average variation in FPR95 is more than
200% compared to Mask2Anomaly.

G. Additional Results
Segmentation results: In Tab. 5 and Fig. 2, we show
the segmentation results for Mask2Anomaly and
Mask2Former. We can qualitatively and qualitatively infer
that Mask2Anomaly performs better than Mask2Former.
Qualitative anomaly segmentation: In Fig. 3, we show
the qualitative comparison of Mask2Anomaly with best-
existing anomaly segmentation methods: Maximized
Entropy [3] and Dense Hybrid [7]. We observe that these
per-pixel classification architectures suffer from large false
positives, whereas Mask2Anomaly, a mask-transformer,
shows confident results across all datasets.
Attention comparison: Figure 4 shows the anomaly
segmentation results obtained using various attention
mechanisms, and the global mask attention clearly exhibits
the best performance.
Qualitative ablation study: We show a component-wise
qualitative ablation of Mask2Anomaly in Fig. 5 by pro-
gressively adding each components. We can observe that
each proposed component improves anomaly segmentation
and complements the others.
Supplementary video: Shows the performance
of Mask2Anomaly on the sequence of images of small



Methods road s. walk building wall fence pole t. light t. sign veg. terrain sky person rider car truck bus train mbike bicycle mIoU
Mask2Former 98.4 87.0 92.7 46.1 59.9 69.5 75.3 82.2 92.9 63.8 95.2 84.9 69.3 95.6 58.7 77.0 79.9 62.7 80.0 77.4

Mask2Anomaly 98.5 86.3 91.5 53.9 60.2 67.5 74.3 88.1 93.1 62.6 96 84.1 62.7 95.7 79.6 80.3 77.1 70.1 77.1 78.8

Table 5: Class-wise semantic segmentation results comparison between Mask2Former and Mask2Anomaly on Cityscapes
validation set.

        Input Image                       Mask2Former                   Mask2Anomaly                  Ground Truth

Figure 2: Semantic Segmentation Results: We can visually infer that Mask2Anomaly shows similar segmentation results
when compared with Mask2Former [4].

obstacle dataset [18]. Mask2Anomaly displays an impres-
sive performance in segmenting wildlife on the road and
anomalies in low-light conditions.
Failure cases: Fig. 6 shows that Mask2Anomaly struggles
to segment tiny anomalies and falsely detects road potholes
as anomalies.



Input Image Maximized Entropy [3] Dense Hybrid [7] Mask2Anomaly(Ours) Ground Truth

Figure 3: Qualitative Results: We observe that per-pixel classification architecture: Maximized Entropy and Dense Hybrid
suffer from large false positives, whereas Mask2Anomaly which is a mask-transformer, show confident results across all
datasets. Anomalies are represented in red.



Input Image Cross-Attention [5] Mask-Attention [4] Global Mask Attention (Ours) Ground Truth

Figure 4: Attention Comparison: We observe that the proposed global mask attention can better segment anomaly among
the compared attention mechanism. Anomalies are represented in red.



          + Global Mask Attention      + Contrastive Learning           + Refinement Mask                     Ground TruthInput Image

Figure 5: Mask2Anomaly Qualitative Ablation: shows the performance gain by progressively adding (left to right )
proposed components. Anomalies are represented in red.



Input Image Mask2Anomaly Ground Truth

Figure 6: Failure Cases: Row (1,2): We can observe that Mask2Anomaly is unable to segment tiny anomalies(inside red
bounding boxes of input image). Please zoom in for better clarity. Row 3: Mask2Anomaly falsely segments the pothole on
the road as an anomaly. Anomalies are indicated in red in the ground truth.
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