
Supplementary Material for
“RbA: Segmenting Unknown Regions Rejected by All”

Overview

This supplementary document contains the implementa-
tion details that are necessary to reproduce our approach
(Section A), additional results using extra data (Section B),
additional ablation results to justify hyper-parameter choices
(Section C), additional details about analysis and ablation
experiments reported in the main paper (Section D), addi-
tional qualitative results to showcase our method compared
to state-of-the-art (Section E), and some challenging cases
that cause failure (Section F).

A. Implementation Details

A.1. Architecture

Fig. 1 illustrates the full Mask2Former architecture along
with our unknown inference procedure. The main compo-
nents of the model are the backbone, the pixel decoder, and
the transformer decoder. We explain the details of each next.

Backbone: We use the Swin-B variant as the backbone [9].
It can take an RGB image with any resolution higher than
32 × 32 as input and outputs feature maps at several reso-
lutions to the pixel decoder. Specifically, the output feature
maps are downsampled with strides 4 (x4), 8 (x8), 16 (x16),
and 32 (x32) with respect to the input image.

Pixel Decoder: Following [2], the pixel decoder mainly
consists of 6 layers of deformable attention (MSDefor-
mAttn) [14]. The multi-scale feature maps with strides x8

x16, and x32 are processed with MSDeformAttn layers to
produce f1, f2, and f3, respectively. In [2], the three pro-
cessed feature maps are passed to 9 transformer decoder
layers in a round-robin fashion. However, we found that
using a single layer in the transformer decoder works better
for unknown detection. Therefore, we only pass the last
layer f3 to the transformer decoder. The feature map x4 is
processed with a 1×1 filter-size convolutional layer and then
added to the processed feature map f1 after bilinear upsam-
pling. Finally, the output is passed to a 3× 3 convolutional
layer to produce per-pixel features F ∈ RCp×H×W , where
Cp = 256 is the embedding dimension. The computation

can be summarized as follows:

F = Conv3×3 (Conv1×1(x4) + Upsample(f1)) (1)

Transformer Decoder: Learnable object queries Q ∈
RN×Cq are fed to the transformer decoder layer to be pro-
cessed with the feature maps from the pixel decoder, where
N = 100 is the number of object queries and Cq = 256
is the embedding dimension. A single transformer decoder
layer consists of a cross-attention layer followed by self-
attention and feed-forward network (FFN), each of which
is followed by a LayerNorm. The cross-attention operation
is performed with mask-attention, where each object query
only attends to regions it predicted in the previous layer.
Since we use only a single layer, each object query attends to
the region it predicts directly from the input feature map be-
fore being processed in the transformer decoder. Learnable
positional embeddings are added to the object queries. The
transformer decoder outputs a refined set of object queries
Qr that predict the regions and classify them.

Region Class Prediction: The refined object queries Qr

are fed into a single linear layer followed by a softmax to
produce the class probability of each region P ∈ RN×K

where K is the number of classes.

Membership Maps Prediction: The refined object queries
Qr are also fed into a 3-layer MLP, so that Qr’s dimen-
sionality matches that of F. Then, Qr and F are multiplied
before being fed into a sigmoid activation to produce the
per-pixel membership maps M ∈ RN×H×W .

A.2. Closed-Set Training

Loss Functions: Before applying any loss function, bipar-
tite matching is used to match object queries to ground truth
binary masks, where each mask contains all the pixels of a
certain class. The matching cost is computed as a weighted
sum of the individual losses. The classification is performed
with the cross-entropy loss. A weighted combination of dice
loss and binary cross-entropy is used to predict regions.

Hyper-Parameters: Following [2], the model is trained
for 90K iterations using a batch size of 16. AdamW [10]
optimizer is used with 0.05 for weight decay and an initial
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Figure 1: Detailed architecture. This figure provides a more detailed view of the Mask2Former [2] architecture, including
our modifications and unknown inference computation. We use a single transformer decoder layer as opposed to the original
implementation that uses 9 layers. Therefore, only a single scale feature f3 from the last layer is passed from the pixel decoder
to the transformer decoder. For outlier supervision, all modules are frozen except for the MLP and the linear layers shown in
pink.

learning rate of 10−4, which is reduced using a polynomial
scheduler. The learning rate for the backbone is multiplied
by 0.1.

Data Augmentation: We use the same augmentations as
in [2]. First, the short side of the input image is resized
by a scale uniformly chosen between [0.5 − 2]. Then a
random crop of size 512× 1024 is applied. After that, large-
scale jittering augmentation [4, 5] is applied with a random
horizontal flip.

A.3. Outlier Supervision

Data Sampling: We use a slightly modified version of
AnomalyMix proposed in [12] for outlier supervision. After
eliminating the samples that contain Cityscapes classes [3],
around 40K images remain for outlier supervision on the
COCO [7] dataset. For a single fine-tuning experiment, we
randomly sample 300 images and fix them throughout the
entire fine-tuning phase.

Fine-tuned Components: For all the fine-tuning experi-
ments, we only fine-tune the 3-layer MLP and linear layers
shown in pink in Fig. 1. Their weights together constitute
approximately 0.21% of the entire model parameters.

Hyper-Parameters: After the model is trained on the
closed-set setting, we fine-tune it for 2000 iterations on
Cityscapes [3] using the setting of the closed-set train-
ing; AdamW [10] optimizer with 0.05 weight decay and
10−4 initial learning with polynomial scheduling. For every
Cityscapes image used in fine-tuning, an object from the
300 COCO samples is uniformly chosen and pasted on the
Cityscapes image with probability pout = 0.1, which is in-

dependent for each image. The RbA score for outlier pixels
is optimized with the squared hinge loss LRbA using α = 5.

Model
Anomaly Track Obstacle Track

AP FPR AP FPR

RbA (Swin-B) 94.46 4.60 93.68 0.15
RbA (Swin-L) 93.78 4.59 95.12 0.08

Table 1: Results on SMIYC using additional data from
Mapillary dataset

B. Training with Extra Inlier Data
We show additional results on the SMIYC benchmark by

using extra training inlier training data from the Mapillary
Dataset [11]. We train two different backbones (Swin-L &
Swin-B) on both cityscapes and Mapillary after mapping the
Mapillary semantic classes to match the cityscapes taxonomy.
As shown in Table 1, additional inlier training results in
noticeable improvements in performance. This highlights
the positive correlation between the ability to segment known
classes and RbA’s performance.

C. Additional Ablation Study

Number of Transformer Decoder Layers: As shown
in [2], more transformer decoder layers improve the inlier
performance, i.e. mIoU on Cityscapes. However, we found
that using fewer decoder layers results in better performance
in terms of outliers. Fig. 2a highlights the decrease in per-
formance in terms of the AP and FPR@95 on the Road
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Figure 2: Ablation study on architectural choices. With more decoder layers, in-distribution performance on Cityscapes
improves but the outlier performance drops in terms of AP and FPR@95 on Road Anomaly a. Good performance is mainly
due to better mask prediction at the cost of a higher semantics loss b. The drop in mIoU with hard masking (HM mIoU) is
another indicator of semantic information loss in the object queries with more decoder layers. The performance improves as
the number of object queries increases c.

Num Iter AP ↑ FPR@95 ↓

1000 83.20 ± 0.11 8.69 ± 0.04
2000 85.49 ± 0.08 7.25 ± 0.04
3000 85.72 ± 0.12 7.82 ± 0.11
4000 84.89 ± 0.07 7.45 ± 0.05
5000 84.66 ± 0.06 8.14 ± 0.03

(a) Number of Iterations

pout AP ↑ FPR@95 ↓ mIoU ↑

0.05 84.34 ± 0.15 9.12 ± 0.10 82.28 ± 0.02
0.1 85.48 ± 0.12 7.24 ± 0.06 82.15 ± 0.09
0.2 85.74 ± 0.11 7.90 ± 0.11 81.54 ± 0.02
0.4 84.97 ± 0.11 9.19 ± 0.05 81.27 ± 0.06

(b) Outlier Selection Probability

α AP ↑ FPR@95 ↓

-0.1 84.01 ± 0.18 9.25 ± 0.06
-0.01 84.41 ± 0.14 9.06 ± 0.11
0.0 84.30 ± 0.06 9.10 ± 0.07
2 85.30 ± 0.07 7.80 ± 0.06
5 85.24 ± 0.08 6.95 ± 0.08
10 85.61 ± 0.10 7.26 ± 0.07

(c) Outlier Threshold

Table 2: Ablation study on outlier supervision. Finetuning with RbA loss for 2000-3000 iterations achieves the best
performance and the performance deteriorates after 3000 iterations as shown in a. A higher probability of exposure to outlier
data results in a consistent decline in the closed-set performance. A probability of 0.1 achieves the best balance between outlier
and inlier performance b. Finally, we ablate the RbA loss parameter α in c and find that the best results are achieved with
α > 0.

Module Params (%) mIoU Road Anomaly FS LaF

AP ↑ FPR ↓ AP ↑ FPR ↓
Full Model 100 80.81 76.00 9.50 73.88 6.02

Transformer Dec. 1.93 80.24 85.08 10.18 72.6 5.51
Pixel Dec. 4.66 81.59 75.83 10.51 69.8 6.77

MLP+Linear 0.21 82.20 85.42 6.92 70.81 6.30

Table 3: Ablation study on fine-tuning different modules.
We show the effect of fine-tuning different components of
the model on the Road Anomaly and Fishyscapes LaF val-
idation sets. Fine-tuning MLP+Linear maintains the best
performance in unknown detection without sacrificing the
closed-set performance.

Anomaly dataset as the number of decoder layers increases.
We investigate this behavior by isolating the sources of error
with respect to the number of decoder layers. Fig. 2b shows
semantic and mask losses of the Mask2Former [2] averaged
over the validation samples on Cityscapes. With more de-
coder layers, we observe that the semantic cross-entropy
loss increases while the mask-related BCE and dice losses

decrease. This shows that the increase in inlier mIoU with
more decoder layers can be attributed to increased perfor-
mance in detecting masks at the cost of a higher semantic
error. By using fewer decoder layers, we regulate the seman-
tic confusion, which helps to better align the logit scores,
resulting in better outlier performance.

Fig. 2b also shows the mIoU evaluated by applying hard
masking on the specialized object queries. Specialized ob-
ject queries perform worse with more decoder layers. The
information loss in the object queries as well as the increase
in the semantic loss show the importance of semantics for
outlier segmentation compared to precise masks.

Number of Object Queries: The original Mask2Former
[2] uses 100 object queries. We train different models by
varying the number of object queries to observe its effect on
detecting outliers. We focus on the AP values on both Road
Anomaly [8] with large objects and on Fishyscapes LaF [1]
with small objects. Fig. 2c shows that more object queries
result in better AP on both datasets. Even if some object
queries specialize in predicting a particular class, the other
object queries still play a role, especially for rare classes, as



shown in Fig.3 in the main paper.

Outlier Data Exposure: We perform an experiment to
show the effect of the number of iterations required for fine-
tuning with our RbA loss in Table 2a. We report the AP and
FPR metrics on the Road Anomaly dataset, averaged over 5
different runs to eliminate the effect of randomness. We can
see that the best results can be achieved after around 2000
and 3000 iterations and then begin to degrade. We also eval-
uate the effect of the amount of outlier data exposed during
training, which is controlled by the parameter pout. We ex-
periment with different values for pout and report the outlier
performance on Road Anomaly and closed-set performance
on Cityscapes averaged over 5 different runs in Table 2b. We
can see that more exposure to outlier data negatively affects
the closed-set performance. Consequently, even the outlier
segmentation performance starts to degrade for pout > 0.2.
We choose the pout = 0.1 because it strikes a reasonable
balance between outlier and closed-set performance.

RbA Loss Parameter: In Table 2c, we report the perfor-
mance of our loss function LRbA using different values of α,
averaged over 5 different runs. We find that positive values
of α work similarly well and set α to 5 in our experiments.

Fine-tuned Component: In Table 3, we analyze the effect
of fine-tuning different parts of the model on validation sets
of Road Anomaly [8] and Fishyscapes Lost and Found [1] us-
ing RbA loss. The alternative components we experimented
with are the full model, only the transformer decoder (blue
+ pink in Fig. 1), only the pixel decoder (red in Fig. 1), and
MLP+Linear layers (pink in Fig. 1). On the Road Anomaly
dataset, fine-tuning MLP+Linear achieves the best perfor-
mance in terms of AP and FPR. On Fishyscapes LaF, the
best AP is achieved by fine-tuning the entire model, while
the best FPR is obtained by fine-tuning only the transformer
decoder. Both options cost a decrease in performance on
Road Anomaly and negatively affect the closed-set perfor-
mance. Fine-tuning MLP+Linear achieves the best balance
between outlier detection and closed-set performance and is
the least costly option in terms of the number of parameters
finetuned.

D. Details of Experiments
In this section, we provide further illustrations and de-

tailed settings of our analysis and ablation experiments in
the main paper. We first perform an experiment to verify the
specialization of object queries. We then provide a detailed
formulation of our ablations on the loss functions and other
methods using Mask2Former including the hyper-parameters
that we use to obtain the results presented in the main paper.

D.1. Specialization of Object Queries

Our method is based on our finding that the object queries
in mask classification enjoy a degree of independence from

one another and that each object query in a subset specializes
in segmenting a specific class from the closed set. Due to
bipartite matching being applied between queries and ground
truth class masks during training, this behavior can be antici-
pated. Here, we empirically verify it using a different dataset
than the one used in training (BDD100K [13]). For each
object query, we count how many times it predicts a certain
class with high confidence. Fig. 3 shows the heatmap of
counts for the Mask2Former model with 100 object queries.
For each of the closed-set classes, there is a single object
query dominantly predicting it.

In the main paper, we test the independence of the spe-
cialized queries by applying hard masking and soft masking
and evaluating per class IoU on Cityscapes. Fig. 4 shows an
illustration of hard and soft masking applied.

D.2. Other Loss Functions

In the main paper, we perform an ablation study with
different loss functions in comparison to squared hinge loss.
In this section, we provide the formulation and the parameter
setting of each loss function. In the following, Ωout denotes
the set of outlier pixels, and Ωin, the set of inlier pixels on
an image.

Mean-Squared Error (MSE): With MSE loss, we optimize
the RbA to be closer to α = 5 for outlier pixels:

LMSE =
∑

x∈Ωout

(RbA(x)− α)
2 (2)

L1: Similar to MSE, we optimize the RbA with L1 loss by
setting α to 5:

LL1 =
∑

x∈Ωout

|RbA(x)− α| (3)

Binary Cross Entropy (BCE): We formulate the scoring of
outliers as a per-pixel binary classification problem, where
outliers correspond to the positive class. We use the RbA
score as the logit score for the positive class. Assuming that
y corresponds to the binary label (outlier vs. inlier) of a pixel
x, we optimize the BCE loss as follows:

LBCE =
∑

x∈Ωout

y·log (RbA(x))+(1−y)·log (1− RbA(x))

(4)

KL Divergence: We use the KL Divergence to minimize
the distance between the predicted class distribution to a
fixed distribution. For inlier pixels, we minimize the dis-
tance to the Dirac delta function where the correct class
has a probability of 1.0. For outlier pixels, we minimize
the distance to a uniform distribution where the entropy is
maximum. Even though this loss function does not optimize
our proposed score function RbA, it helps us estimate the
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Figure 3: Specialization of Object Queries. Certain object queries specialize in predicting a specific class. For each query,
we show how many times it predicts a region to belong to a class with high confidence. The sparsity in the plot clearly shows
the specialization of queries.
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Figure 4: Illustration of hard vs. soft masking of object
queries. In hard masking, when predicting class k, all but
the object queries specialized to predict class k are masked
before the transformer decoder so that the specialized query
can only interact with the image features. In soft masking,
the queries are allowed to interact within the transformer
decoder but are dropped after, and only the specialized query
is used to predict class k.

contribution of RbA by pushing the predicted class proba-
bilities toward the ideal distributions for outliers and inliers.
Let Lp(x) be the class probability distribution of a pixel x
with ground truth label y. Let Pin(y) be a fixed probability
distribution where class y has probability 1.0. Let U be a
fixed uniform probability distribution. Formally, the loss
function is defined as follows:

Lin =
∑

x∈Ωin

DKL(Lp(x) ∥ Pin(y))

Lout =
∑

x∈Ωout

DKL(Lp(x) ∥ U)

LKL =
1

2
(Lin + Lout)

(5)

D.3. Other Methods with Mask2Former

To disentangle the contribution of our scoring function
RbA from the architecture, in the main paper, we present

the results of the state-of-the-art methods PEBAL [12] and
DenseHybrid [6] using the Mask2Former architecture. Here,
we provide the details of this ablation experiment for each
method. For a fair comparison, we train both methods by
fine-tuning the same components as the RbA, that is the
MLP+Linear layers as shown in Fig. 1, and also using the
same outlier data supervision method as described in the
main paper.

PEBAL: The optimized objective as per the official imple-
mentation [12] consists of three components. First, there
is the pixel-wise anomaly abstention loss (PAL) with the
abstention term and penalty defined as follows:

LPAL = −
∑
x∈Ω

log

(
Ly(x) +

LK+1(x)

a(x)

)
where Ω is the set of all pixels on a given image, y ∈
1, . . . ,K + 1 is the ground truth class of pixel x ∈ Ω, and
K + 1 is the class for the outliers. In Mask2Former, class
K + 1 is assumed to be the no object class, therefore we
avoid dropping it from the region class probabilities term
P (see Fig. 1) while fine-tuning with the PEBAL objective.
The abstention penalty term a(x) is defined as follows:

a(x) = (−E(x))
2

E(x) = − log

K∑
k=1

exp(Lk(x))
(6)

where E(x) is the free energy function. When the penalty
term is high, the prediction is discouraged from abstaining
and vice versa.

The second component of the loss optimizes the energy
terms such that it is maximized for outlier pixels and mini-
mized for inlier pixels as follows:

Lenergy =
∑

x∈Ωin

max(0, E(x)−min)
2+

∑
x∈Ωout

max(0,mout − E(x))2
(7)



where min and mout are hyper-parameters to be set. In
our experiments, we experimentally use mout = −2.5 and
min = −3.5.

The last component is a regularization term for the
smoothness and sparsity of the predicted energy map:

Lreg =
∑
x∈Ω

β1|E(x)− E(N (x))|+ β2|E(x)| (8)

where N (x) is the set of vertical and horizontal neighboring
pixels of x, and β1 and β2 are hyper-parameters. We use
β1 = 3× 10−7 and β2 = 5× 10−5.

The full objective is defined as the weighted sum of the
three loss functions:

LPEBAL = LPAL + βLenergy + Lreg (9)

where we set β = 0.1. Starting from the same checkpoint
that we use fine-tuning RbA, we optimize the model with
LPEBAL for 5K iterations. We set other hyper-parameters
to be the same as the ones that we use for RbA.

DenseHybrid: Following the official implementation of
DenseHybrid [6], we added an additional outlier prediction
head D(x) ∈ R2×H×W to the Mask2Former model which
is defined as follows:

D(x) = Conv3×3 (ReLU(BatchNorm(x))) (10)

The outlier prediction head takes the output feature map of
the highest resolution from the pixel decoder and predicts
a binary output for every pixel denoting the probability of
being an outlier. The objective for DenseHybrid is defined
as follows:

LDH = CE(L(xin),Yin) + β1CE(D(x),Yout) + β2Lo

(11)
where CE is short for the cross-entropy loss, xin ∈ Ωin

denotes the set of inlier pixels, Yin denotes the ground truth
for the closed-set and Yout denotes the binary map where
the outlier pixels are set to one. We experimentally set the
hyper-parameters β1 = 0.3 and β2 = 0.03. Lo is defined as
follows:

Lo =
1

|Ωout|
∑

x∈Ωout

log

K∑
k=1

exp (Lk(x))+sg[mean(L(x))]

(12)
where sg is short for the stop gradient operation, and mean
denotes the mean of all the elements of the input tensor.

E. Additional Qualitative Results
In Fig. 5 and Fig. 6, we show additional qualitative re-

sults of RbA compared to the state-of-the-art methods PE-
BAL [12] and DenseHybrid [6]. For other methods, we show
both the outputs of the models reported in their respective

repositories and our implementations of the methods using
Mask2Former. The proposed scoring function RbA reduces
the false positives on the boundaries of inliers and ambigu-
ous background regions compared to the baselines. These
improvements can be observed more prominently on the
obstacle track (Fig. 6) under adverse weather and lighting
conditions. Moreover, compared to the baselines, RbA re-
sults in fewer false positives as a result of reducing confusion
with inlier classes.

F. Failure Cases
We analyze some failure cases of our method in this

section. A common reason for the failure cases is the high
similarity to the inlier classes.

Tractors and Boats: As shown in Fig. 7, RbA fails to
detect tractors and boats as outliers due to their similarity to
inlier vehicle instances. Although the objects are partially
identified, the model cannot decisively predict the whole ob-
ject regions as outliers. The existing methods either segment
the boats and tractors at the cost of more false positives, as in
the case of PEBAL, or also suffer from a lack of smoothness,
as in the case of DenseHybrid.

Far away Animals: As shown in Fig. 8, animals that are
situated relatively far from the camera are confused as the
inlier pedestrian class. This can be attributed to the domi-
nance of pedestrian class in the training data as well as the
similarity of legged animals to a pedestrian in appearance.

Toy Cars: Fig. 9 shows that the model fails to detect a
toy car on the road and predicts it confidently as the inlier
car class. While the class assignment can be considered
semantically correct, it is still a hazard in a real driving
scenario. Note that a small car can either be a toy car or a
real car that is far away. Therefore, distinguishing real cars
from toy cars might require additional information such as
depth or scale.



Input PEBAL DenseHybrid PEBAL (M2F) DenseHybrid (M2F) RbA (Ours) + OoD Sup.

Figure 5: Qualitative Results on SMIYC Anomaly Track. On the anomaly track of the SMIYC benchmark, we compare
RbA with outlier (OoD) supervision to the state-of-the-art methods PEBAL [12] and DenseHybrid [6] using the models
that were shared in their respective repositories, as well as the versions we trained using Mask2Former (M2F). RbA better
distinguishes outliers from inliers and produces more smooth outlier maps with fewer false positives.
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Figure 6: Qualitative Results on SMIYC Obstacle Track. We compare RbA with outlier supervision to the state-of-the-art
methods PEBAL [12] and DenseHybrid [6]. Under adverse weather and difficult lighting conditions, RbA can detect anomalies
consistently better compared to DenseHybrid and reduce false positives more compared to PEBAL.



Input PEBAL (M2F) DenseHybrid (M2F) RbA (Ours) + ooD Sup.

Figure 7: Failure Cases: Tractors and Boats. Due to their high similarity to inlier car and truck classes, unknown objects
like tractors or boats are sometimes predicted as inliers.

Input PEBAL (M2F) DenseHybrid (M2F) RbA (Ours) + ooD Sup.

Figure 8: Failure Cases: Animals Confused As Pedestrians. As the pedestrian is one of the most frequent classes on
Cityscapes, the model sometimes predicts animals that appear at a distance as pedestrians (highlighted in circles) on images
from SMIYC Anomaly Track.

Input PEBAL (M2F) DenseHybrid (M2F) RbA (Ours) + ooD Sup.

Figure 9: Failure Cases: Toy Cars Predicted As Real Cars. One confusing anomaly case for our model is small toy cars
placed in front of the vehicle. Even though they can be semantically considered as cars, they are considered obstacles in a real
driving scenario.
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