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We provided the additional information and analyses,
which are listed below:

• Appendix A: Notations.

• Appendixes B: We provided the ablation study in cases
with and without data augmentations.

• Appendix C: We extracted the additional experimental
results to show the outstanding performance on the tar-
get domain of the proposed method in various settings.

• Appendixes D: We reported the additional analyses to
evaluate the effectiveness of the proposed method.

• Appendix E: We provided a short discussion to distin-
guish the concept among the proposed method TriCT
and previous works that share several methodologies
in common but have different roles in terms of three
aspects: Co-training, Tri-network, and inter-and-intra-
domain discrepancies.

A. Notation

This section provides the notations frequently used in
this paper, as listed in Table 1.

B. Additional ablation study

We conducted additional experiments (reported in Table
2) to evaluate the effect of data augmentation. Without data
augmentation, the average accuracy was dropped by 1.8%.

Two motivations for using data augmentations: address-
ing the problem of limited training data and enhancing the
model’s generalization capabilities while mitigating over-
fitting by introducing variations but remaining representa-
tive of the true distribution. Furthermore, we primarily em-
ployed data augmentations to promote consistency of the
different models across various versions of the training data
in our framework.

*Corresponding author.

Table 1: Notation used in the proposed method.

Notations Descriptions

DS The set of source samples.

xi
S The i-th labeled sample in the source domain.

yiS The ground-truth label of i-th labeled sample in the source domain.

NS The number of source samples.

DTl
The set of labeled target samples.

xi
Tl

The i-th labeled sample in the target domain.

yiTl
The ground-truth label of i-th labeled sample in the target domain.

NTl
The number of labeled target samples.

DTu
The set of unlabeled target samples.

xi
Tu

The i-th unlabeled sample in the target domain.

NTu
The number of unlabeled target samples.

Augw(·) The weak augmentation function.

Augstr(·) The strong augmentation function.

xi,w
S The weakly augmented version of xi

S .

xi,str
S The strongly augmented version of xi

S .

xi,w
Tl

The weakly augmented version of xi
Tl

.

xi,str
Tl

The strongly augmented version of xi
Tl

.

xi,w
Tu

The weakly augmented version of xi
Tu

.

xi,str
Tu

The strongly augmented version of xi
Tu

.

E The shared feature extractor.

Fmlp The multilayer perceptron classifier.

Ginter
gcn The inter-view GCN classifier.

Gintra
gcn The intra-view GCN classifier.

G A graph.

V The set of nodes in a graph.

vi A node vi ∈ V .

E The set of edges in a graph.

ei,j An edge ei,j = (vi, vj) ∈ E connecting nodes vi and vj .

Table 2: Accuracy (%) on DomainNet dataset in cases with
and without data augmentations under 3-shot setting using
ResNet-34.

Setting R→C R→P P→C C→S S→P R→S P→R Mean
With Aug. 89.1 86.6 86.3 79.9 84.5 82.1 90.1 85.5

Without Aug. 87.4 86.1 84.9 75.8 83.0 78.8 89.8 83.7



Table 3: Accuracy (%) on DomainNet under 5-shot and 10-shot settings extracted by the ResNet-34 backbone network.

R→C R→P P→C C→S S→P R→S P→R MeanMethod 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot
MME 75.5 77.1 70.4 71.9 74.0 76.3 65.0 67.0 68.2 69.7 65.5 67.8 79.9 81.2 71.2 73.0
APE 77.7 79.8 73.0 75.1 76.9 78.9 67.0 70.5 71.4 73.6 68.8 70.8 80.5 82.9 73.6 76.8

DECOTA - 81.8 - 75.1 - 81.3 - 73.7 - 73.4 - 73.7 - 80.7 - 77.1
CLDA 80.3 81.2 76.0 77.7 77.8 80.3 71.6 74.1 74.5 77.1 72.9 74.1 84.0 85.1 76.7 78.5
CDAC 80.8 83.1 75.3 77.2 79.9 81.7 72.1 74.3 74.7 76.3 72.9 74.6 83.2 84.7 76.9 78.9
MVCL 81.1 83.0 78.2 79.2 81.7 82.7 74.7 76.0 77.2 78.1 74.6 75.9 86.3 87.0 79.1 80.3
TriCT 90.2 91.4 87.4 88.7 87.2 90.6 80.4 82.0 86.1 87.0 84.7 86.6 91.9 92.6 86.8 88.4

Figure 1: Convergence analysis of the domain adaptation
task R→C on DomainNet using ResNet-34 under the 3-
shot setting. We compared the convergence of the proposed
method and the prior SSDA methods.

C. Additional experiments

We reported additional comparison results on 5-shot and
10-shot labeled target samples per class of the Domain-
Net dataset using ResNet-34 as the backbone network. The
classification performance of various state-of-the-art SSDA
methods, including MME [8], APE [3], DECOTA [11],
CLDA [9], CDAC [4], MVCL [6], and the proposed method
TriCT were listed in Table 3. As shown in this table, the
classification performance on the target domain of the pro-
posed method achieved the highest in all domain adapta-
tion scenarios. The average classification accuracy of TriCT
improved by 7.7% and 8.1% compared to the second-best
method MVCL under 5-shot and 10-shot settings, respec-
tively.

D. Additional analysis

D.1 Convergence analysis
We analyzed the convergence to evaluate the effective-
ness of the proposed method compared to the state-of-the-

art (SOTA) methods, consisting of MME [8], UODA [7],
ECACL [5], and CDAC [4], as illustrated in Figure 1. This
figure showed the classification accuracy of the different
methods, including MME, UODA, ECACL, CDAC, and
the proposed method TriCT for the domain adaptation task
R→C (Real to Clipart) on DomainNet using ResNet-34 un-
der the 3-shot setting. It was apparent that both inter-view
GCN and intra-view GCN classifiers reached the highest
classification accuracy at early steps after 20,000 training
steps, and they kept a stable convergence along with the
training iterations. This was because these GCN classifiers
could collect the neighbor information for generalization on
the target data. Similarly, MME and UODA quickly con-
verged after 20,000 training steps. In contrast, the classi-
fication accuracy of ECACL and CDAC tended to increase
after 50,000 training steps. However, it still maintained a
big gap compared to the classification accuracy of our MLP
classifier.

D.2 Visualization analysis

We selected the representations of 10 classes in the source
and target domains of the domain adaptation task R→C on
DomainNet using ResNet-34 under the 3-shot setting for vi-
sualization in Figure 2. The first row included the results of
the target representation results extracted from the different
domain adaptation methods such as MME [8], ECACL [5],
CDAC [4], and TriCT. The second row consisted of the do-
main alignment results, which were used to evaluate the do-
main adaptation ability of these methods. As shown in Fig-
ures 2a, 2b, 2c, and 2d, the target representations extracted
by TriCT were more discriminative compared to the other
SOTA methods, which indicated that the proposed method
effectively alleviates the intra-domain discrepancy. More-
over, as shown in Figures 2e, 2f, 2g, and 2h, the source and
target representations extracted by TriCT showed well-align
results compared to MME, UODA, ECACL, and CDAC, re-
vealing the effectiveness of TriCT for mitigating the inter-
domain discrepancy.

E. Discussion

Co-training. DECOTA [11] and MVCL [6] break SSDA
into two subtasks; they then use two different models to
handle the two different tasks. Finally, these models com-
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Figure 2: t-SNE [10] visualization of the extracted representations. We illustrate the representations of 10 classes in the
domain adaptation task R→C on DomainNet using ResNet-34 under the 3-shot setting. (a), (b), (c), and (d) show the target
presentations extracted by the various domain adaptation methods. (e), (f), (g), and (h) display the domain alignment results of
the different domain adaptation methods. ‘air.’, ‘alar.’, ‘aspar.’, ‘ban.’, ‘bas.’ and ‘bat.’ are abbreviations of ‘aircraft_carrier’,
‘alarm_clock’, ‘asparagus’, ‘banana’, ‘basket’, and ‘bathtub’, respectively.

plemented their knowledge of each other by exchanging
their generated pseudo labels via a co-training strategy.
However, TriCT uses three different classifiers to establish
three different co-training strategies that could effectively
exploit the complementarity among these models. Figure 3
illustrates the different training strategies between DECOTA
and TriCT methods.

Tri-network. Multi-Head Co-Training [2], Tri-net [1],
and TriCT have similar network architecture, including a
shared feature extractor and three classifier headers. Never-
theless, these methods contain quite different training al-
gorithms. For example, in Multi-Head Co-training, they
fixedly select two classifiers as teachers to teach the third
classifier working as a student model. Specifically, they
minimize the consistency loss between pseudo labels gen-
erated by teacher classifiers on a weak augmentation image
and predictions of the student classifier on a strong augmen-
tation image with the same samples. In contrast, in Tri-net,
a classifier can simultaneously be a teacher and a student.
When it works as the teacher model, it is randomly paired
with another classifier to train the remaining classifier by
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Figure 3: Overall training strategy of DeCoTa and TriCT.
(a) DeCoTa optimizes the training model using co-training.
(b) TriCT uses three co-training strategies to learn optimal
network parameters.

their generated pseudo labels. On the contrary, when it
works as the student model, it learns extracted knowledge



information from two other models. This algorithm is con-
ducted for all classifiers. Unlike Multi-Head Co-training
and Tri-Net, TriCT introduces a novel training algorithm
consisting of three co-training strategies. Each co-training
scheme is proposed for a different role that exploits the cor-
relation between two classifier models.

Inter-domain and intra-domain discrepancies. CLDA
[9], and CDAC [4] also attempt to reduce inter-domain and
intra-domain discrepancies simultaneously by exploiting in-
formation from unlabeled target data as much as possible.
They share the same overall model architecture, including
a feature extractor and a single classifier but have differ-
ent training procedures. CLDA utilizes contrastive learning
to achieve inter-domain and intra-domain alignment, while
CDAC proposes adaptive clustering to reduce both inter-
domain and intra-domain gaps. However, TriCT introduces
the Trico-training algorithm with three co-training strate-
gies to effectively handle inter-domain and intra-domain
discrepancies.

Importantly, all the approaches mentioned above use the
MLP classifier to design their network architectures. How-
ever, the MLP classifier can be failed to explore the data
training structure because it only forces on each individual
image without considering the semantic information of its
neighbors; therefore, the classification performance still has
room for improvement. To solve this problem, we use the
GCN classifier model to aggregate extracted features; thus,
the classification accuracy on the testing set is improved be-
cause the trained model can capture the training data struc-
ture. To the best of our knowledge, TriCT is the first SSDA
method that achieves state-of-the-art performance with the
graph-based algorithm.
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