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1. Supplemental Material

In this document, we provide the following supplemen-

tary contents:

• Details of warp (Section 2).

• Details of composition (Section 3).

• Analysis on robustness and distortion (Section 4).

• More results (Section 5).

Regarding the network architecture, we have not pro-

vided specific details such as layers, channels, etc., as we

would like readers to focus more on the motivations behind

our approach to solving the problem. For the details, we

promise to release the code for reference.

2. More Details of Warp

2.1. Physicality of TPS

The thin plate spline (TPS) method can simulate arbi-

trary 2D deformation through the use of a deformable thin

plate, which is more general than using homography. When

all control points are correctly matched, we aim to use a

thin plate with minimal curvatures. We then formulate an

energy optimization problem that involves both alignment

and distortion, as described in [1]:

ε = εalignment + λεdistortion, (1)

where λ is a balancing factor to control the smoothness of

the warp. The alignment energy and distortion energy are
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defined as follows:
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where T (·) is the warp function. When λ > 0, the con-

trol points are allowed to be slightly misaligned in order to

produce a warp with less distortion. However, in our imple-

mentation, we set λ = 0 to strongly constrain the motion of

the control points. This means that our network predicts the

motions of the control points, and enforces the real motions

(T (p) − p) to be equal to the predicted motions. By min-

imizing Eq. 1, we are able to determine the warp function,

which is derived as follows (see Eq. 2 in the manuscript):

p′ = T (p) = C +Mp+

N∑
i=1

wiO(‖ p− pi ‖2). (3)

2.2. Discussion of Alignment and Distortion

In the previous section, we explained that aligning all

control points causes distortion in the warp function. To

mitigate this issue, we assume that control points are

evenly distributed in the target image, and their motions

are smooth. We form a mesh by connecting control points

and introduce the intra-grid/inter-grid constraint for content

preservation.

To summarize, the proposed warp yields two improve-

ments. (1) Our network architecture with TPS benefits the

alignment in overlapping regions. (2) The distortion loss

(Eq. 7,8 of the manuscript) benefits the distortion elimina-

tion in non-overlapping regions.
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Figure 1: Backward interpolation.

2.3. Multiple Homography vs. TPS

The TPS warp is more appropriate than the traditional

mesh-based multi-homography warp [9] in deep stitching.

Here, we discuss the reason in detail.

The multi-homography stitching methods warp the tar-

get image into a warped target image through mesh defor-

mation as illustrated in Fig. 1. In the implementation, back-

ward interpolation is commonly leveraged to avoid invalid

pixels like holes. In backward interpolation, for an arbi-

trary point P in a warped target image, we need to calculate

the corresponding location in the target image. Then bilin-

ear interpolation is leveraged to obtain the pixel value of

P . Therefore, how to calculate the corresponding position

is the key problem. To make it, the first thing is to deter-

mine which grid dose P belong to in multi-homography

warp. In the case of Fig. 1, it seems easy to find that P
belongs to the second grid, so we could calculate the cor-

responding homography through the four pairs of vertices

of this grid. However, how to determine the belongings of
all points in the warped target image in an efficient parallel
manner makes a big difficulty. Because the warped mesh

has an irregular shape, in which even the non-convex grid

might be produced. This process is hard to be parallelly

accelerated, especially in GPUs, making the training time

unbearable. (Empirically, the training process might take

millions of iterations.)

In contrast, the TPS transformation has the advantage

that all pixels share the same warp function (Eq. 3), elim-

inating the need to determine the belonging of each pixel

to a particular grid. In the multi-homography scheme, the

warp of a pixel is determined by only four pairs of vertices,

while in TPS, it is influenced by all pairs of control points

((U +1)× (V +1) in our paper). As a result, the backward

interpolation of all pixels in the warped target image can be

efficiently achieved in a parallel manner for TPS, making

the training process faster compared to multi-homography.

2.4. Difference to Stitching Methods using TPS

The existing stitching methods using TPS are all tradi-

tional feature-based solutions. For example, ELA [5] calcu-

lates TPS transformations using matched keypoints such as

SIFT. This transformation is then processed to reduce com-

putational cost and distortions.
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(a) Left: a composition case. Right: the legend.

(b) Boundary masks: Mbr (left) and Mbt (right).

(c) Warped masks: Mr (left) and Mt (right).

Figure 2: Details of the boundary term for the composition.

In contrast, the proposed method is the first deep

learning-based stitching scheme that utilizes TPS transfor-

mations. The calculation of this warp is no longer reliant

on matched keypoints. Instead, we initially define control

points that are evenly distributed in the target image and

then predict the motions of these points using the unsuper-

vised network. Through the initial control points and the

predicted motions, we obtain two sets of control points with

one-to-one correspondence. We then formulate the warp

and eliminate projective and structural distortions using

intra-grid and inter-grid constraints as additional loss func-

tions. Compared to ELA, our proposed method achieves

superior alignment (Table 1 of the manuscript), fewer dis-

tortions (Fig. 5 of the manuscript), and better efficiency

(Table 2 of the manuscript).

3. More Details of Composition
3.1. Boundary Term

Considering a composite case (Fig. 2a), we aim to fix the

endpoints of a seam on the intersections. To achieve this, we

define two boundary masks, as shown in Fig. 2b: Mbr and

Mbt. The two boundaries are located inside the warped ref-

erence image and the warped target image, respectively. In

our boundary constraint, we encourage the boundary pixels

of overlapping regions in S to be from either Iwr or Iwt

using the following equation:

Lc
boundary =‖ (S− Iwr) ·Mbr ‖1 + ‖ (S− Iwt) ·Mbt ‖1 .

(4)
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Figure 3: The difference between masks from seam cutting [6] and our composition.

By constraining the values of boundary pixels in a stitched

image, we constrain that in composition masks indirectly.

More importantly, Mbr and Mbt share two common inter-

sections as represented by the red circles in Fig.2a. These

common pixels inevitably yield ambiguity for the belongs

of intersections, and the ambiguity helps to determine the

seam endpoints.

Next, we describe how to get the boundary masks. Given

the warped masks Mr, Mt (as shown in Fig. 2c), we obtain

boundary masks by the following formulation:

Mbr = Mr · E (Mt),

Mbt = Mt · E (Mr),
(5)

where E (·) denotes the edge extraction operation that

can be implemented by several convolutional layers with

SOBEL filters.

3.2. Difference to Seam Cutting

Traditional seam-cutting methods find the invisible

seams by dynamic programming or assign composition la-

bels by graph-cut optimization. The masks used for fusion

in these methods only contain values of 0 or 1.

However, for a learning system, the predicted masks

with strict integers would prevent gradients from back-

propagation. Moreover, the masks with strict integers could

easily produce discontinuous contents in the composited re-

sults. Therefore, we define the values of the masks to be

float and propose a smoothness constraint on the stitched

image (Eq. 12 of the manuscript) to encourage the smooth

transition on both sides of this “seam”. Fig. 3 shows the

masks from seam cutting [6] and ours, where our “seam”

is significantly wider. That is why we cannot quantitatively

evaluate our composition in traditional metrics.

4. Analysis
4.1. Analysis on Robustness

Warp: We argue that the proposed method is more ro-

bust than traditional solutions, especially in challenging

cases. To illustrate this, we compare our method with APAP

[9], which represents traditional solutions. In Fig. 4a, we

show a challenging case with extremely low light. APAP

extracts SIFT keypoints, which are marked using red or

(a) Robustness analysis of warp.
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We cannot observe the misaligned tree in the color 
difference map.

But it can be obviously noticed in the 
semantic difference map.

 

 

(b) Robustness analysis of composition.

Figure 4: Robustness analysis.

green circles. RANSAC is then used to remove the out-

liers (red circles), and the green line indicates matched key-

points. As shown in Fig. 4a, the keypoints are very sparse,

and some keypoints are even mismatched, which can easily

lead to stitching failure. In contrast, our solution extracts

semantic feature maps, which become increasingly evident

with the increase of network layers, contributing to our ro-

bustness.

Composition: Regarding composition, existing seam-

cutting methods mainly rely on color difference or other

pixel-level energy maps. However, these maps often lose

some essential content in challenging cases, such as low

light. Fig. 4b displays an example where the tree (high-

lighted by red arrows) is missing in the color difference

map. The proposed deep composition method overcomes



Figure 5: Projective distortion: APAP vs. ours. These in-

stances are from UDIS-D dataset[8].

this issue by extracting semantic difference maps, even

though it is trained with color difference. Through training

with extensive samples (both simple cases and challenging

cases), the composition network is capable of perceiving

the semantic difference even in low-light scenes. We illus-

trate the extracted feature maps and semantic residuals of

the composition network in Fig. 4b, where the tree can be

obviously noticed in semantic difference maps.

4.2. Analysis on Projective Distortion

Compared with other warps, our warp produces fewer

projective distortions. We analyze the phenomenon from

two perspectives:

i) Traditional methods estimate the warp from matched

features. However, these features are usually distributed in

some texture-rich local areas, so that the warp aligns well

with these regions and overlooks other overlapping areas.

Compared with them, our objective goal is to align all the

pixels in overlapping regions (Eq. 6 of the manuscript).

Therefore, our warp produces less projective distortions.

ii) To further eliminate projective distortions, we design

an intra-grid constraint (Eq. 7 of the manuscript) to prevent

the deformed mesh from scaling dramatically.

5. More Results
5.1. Results of Warp

The Fig. 7,8 of this material are the inputs of Fig. 4, 5

in the manuscript. We demonstrate more results of warp on

UDIS-D dataset and other datasets in Fig. 11 and Fig. 12.

5.2. Results of Composition

Here, we illustrate more comparative results of large-

parallax composition in Fig. 13. To highlight the parallax

artifacts intuitively, we use SIFT+RANSAC to align input

images and blend the results with average fusion for refer-

ence. Then we compare our results with SoTA composition
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Figure 6: User study of visual preferences with existing

SoTA solutions. The results are presented in percentage and

averaged on 20 participants.

Figure 7: The input images of Fig. 4 in the manuscript.

Figure 8: The input images of Fig. 5 in the manuscript.

methods (perception-based seam cutting [6] and reconstruc-

tion [8]) in UDIS-D [8] and other large-parallax datasets [7].

5.3. Results of Complete Solutions

Then, we compare our complete framework with other

SoTA solutions (LPC [4] and UDIS [8]) with seam cutting



Table 1: Ablation studies of alignment performance

on UDIS-D dataset[8]. With the distortion term

(�inter+�intra), the alignment performance decrease little.

Loss PSNR SSIM

1 w/o �inter+�intra 25.54 0.841

2 w/o �intra 25.53 0.840

3 w/o �inter 25.48 0.839

4 Our warp 25.43 0.838

Table 2: The superiority of combining TPS with homogra-

phy. The experiments are conducted on UDIS-D dataset.

Architecture PSNR SSIM

1 Homography + Homography 24.46 0.802

2 TPS + TPS 25.31 0.836

3 Homography + TPS 25.43 0.838

or reconstruction as their post-processing operations. The

qualitative results are shown in Fig. 14.

Moreover, we strictly follow the experimental setup in

UDIS and conduct user studies to test visual preferences.

The participants include 10 volunteers with computer vi-

sion backgrounds and 10 outside this community. Specifi-

cally, we compare our method with LPC [4] and UDIS [8]

one by one. At each time, four images are shown on one

screen: the inputs, our stitched result, and the result from

LPC/UDIS. The results of ours and the other method are il-

lustrated in random order each time. The user is allowed

to zoom in on the images and is required to answer which

result is preferred. In the case of “no preference,” the user

needs to answer whether the two results are “both good” or

“both bad”. The studies are carried out in the testing set of

UDIS-D [8], which means every user has to compare each

method with ours in 1,106 images. The results are shown in

Fig. 6.

Besides, we demonstrate more results in traditional

datasets [5, 7, 9, 2, 10] in Fig. ??. Our solution can generate

natural and seamless results in different scenes with various

resolutions and parallax. Also, we promise to release all

subjective results, including 1,106 images in UDIS-D and

others in traditional datasets.

5.4. Results of Challenging Scenes

We also demonstrate more results in some challenging

scenes, such as low texture, low light, etc. As shown in Fig.

10, the traditional scheme fails to stitch these images due

to the lack of geometric features. In contrast, our solution

succeeds (the reason is discussed in Section 4.1).

5.5. Ablation Studies

As shown in Fig. 7 of the manuscript, the distortion con-

straints preserve the shape effectively. Also, it produces lit-

tle negative impact on alignment. The quantitative results

Figure 9: Stitching four images from the traditional

dataset[3].

LPC OursInputs

(a) Low-texture cases.

LPC OursInputs

(b) A case in the dark. Top: the original images (inputs and results).

Bottom: images after enhancement for better observation.

Figure 10: Results of challenging scenes. Traditional meth-

ods fail in these scenes due to the lack of geometric features.

All the cases are from UDIS-D dataset [8]

are shown in Table 1, where the SSIM merely decreases

0.03 when we adopt these shape-preserving constraints.

Besides, we replace the TPS prediction with homogra-

phy prediction in our warp to demonstrate the improvement

of TPS deformation. As shown in Table 2, PSNR/SSIM is

increased by 0.97/0.036 with TPS deformation, revealing

the superiority of TPS over Homography.

5.6. Multi-Image Stitching

Most stitching methods (e.g., LPC[4], UDIS[8]) focus

on stitching two images, and so do ours. However, stitching

multiple images can be generalized by performing multiple

pairwise stitching. Here, we show a case of stitching 4 im-

ages in Fig. 9.
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