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Figure 1. The architecture of the Policy Network.

1. Overview

In this supplementary material, we present additional
results and details of our study. In Section 2, we provide
the results and parameters of the policy network. Section 3
includes visualizations for both the 2D line fitting task and
the fundamental matrix estimation task. In Section 4, we
present ablation study for the 2D line fitting task and the
network structure on the fundamental matrix estimation task.

2. Policy Network

RLSAC is built on SAC-Discrete framework [2], utiliz-
ing the policy network of actor and critic networks shown in
Figure 1. The critic network does not have a final softmax op-
eration. The architecture comprises four main components:
Dimension Reduction, Edge Feature Extraction, Global Fea-
ture Extraction, and Probability Head. Since the channel of
state feature is c = 261, we first implemented a dimension

reduction module using multi-layer perceptron (MLP) to
avoid information loss caused by large channel differences.
Then the edge convolution (EdgeConv) [4] is used to form
the Edge Feature Extraction module, which can extract edge
feature effectively. We further extracted global features us-
ing MLP with Max Pooling, which are then combined with
each edge feature. Finally, to output the probability of each
data point belonging to the minimum set, Probability Head
module uses MLPs and softmax to generate the output. The
detailed network parameters are shown in Table 1. For MLP,
1× 1 convolution with 1 stride is used.

3. Visualization
To better demonstrate the performance of RLSAC on both

the 2D line fitting task and the fundamental matrix estimation
task, we visualize RLSAC on various scenes. For the 2D line
fitting task, we adopt the mean Average Accuracy (mAA)
metric in [1]. The angular difference between the estimated



Table 1. Detailed network parameters in policy network. K Nearest Neighbors (KNN) are selected in the EdgeConv. MLP width means
the number of output channels for each layer of MLP.

Module Layer Parameter

Dimension Reduction
MLP width={32}

BatchNorm -
LeakyReLU negative slope=0.2

Edge Feature Extraction

EgdeConv 0

Get Graph Feature k=15
MLP width={32}

BatchNorm -
LeakyReLU negative slope=0.2

MLP width={32}
BatchNorm -
LeakyReLU negative slope=0.2

Max Pool -

EgdeConv 1

Get Graph Feature k=15
MLP width={32}

BatchNorm -
LeakyReLU negative slope=0.2

MLP width={32}
BatchNorm -
LeakyReLU negative slope=0.2

Max Pool -

EgdeConv 2

Get Graph Feature k=15
MLP width={32}

BatchNorm -
LeakyReLU negative slope=0.2

Max Pool -
Concatenate 0 EgdeConv 0 + EgdeConv 1 + EgdeConv 2 -

Global Feature Extraction

MLP width={512}
BatchNorm -
LeakyReLU negative slope=0.2

Max Pool -

Concatenate 1 Concatenate 0 + Global Feature -

Probability Head

MLP width={128, 32}
BatchNorm -
LeakyReLU negative slope=0.2

Dropout dropout rate=0.5
MLP width={1}

BatchNorm -
LeakyReLU negative slope=0.2

Softmax -

line and the ground truth line is used as the error metric,
which is used to calculate the mAA metric with a tolerance
threshold of 0.5◦. For the fundamental matrix estimation
task, the mAA with threshold of 10◦ is used as evaluation
metric. It can be seen that RLSAC can choose a suitable
minimum set to explore better hypotheses.

By visualizing 2D line fitting experiments at various out-

lier point ratios in Figure 2, we can see how RLSAC is
robust to noise interference and can efficiently explore better
models. However, as shown in specific steps like Step 7
in Figure 2(e), RLSAC does not always move towards the
best model. This is because the agent in RLSAC outputs
actions to maximize long-term return rather than finding the
best model at current step. This aligns with the exploration
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Figure 2. The step results of RLSAC on 2D line fitting in different outlier ratio. The green points represent inliers, while the red points
represent outliers. The sampled minimum set points are denoted by black edges. The ground truth is represented by a yellow line, while the
hypothesis and inlier threshold are represented by blue and dashed lines respectively.



(a) Inlier Ratio: 0.99,111: 0.218°,111: 0.452° (b) Inlier Ratio: 0.85,111: 0.739°,111: 0.659°

(c) Inlier Ratio: 0.99,111: 0.396°,111: 2.519° (d) Inlier Ratio: 0.97,111: 2.034°,111: 6.215°

(e) Inlier Ratio: 0.98,111: 0.774°,111: 1.205° (f) Inlier Ratio: 0.88,111: 2.763°,111: 4.584°

(g) Inlier Ratio: 0.55,111: 0.504°,111: 0.043° (h) Inlier Ratio: 0.95,111: 2.259°,111: 5.513°

(i) Inlier Ratio: 0.88,111: 5.372°,111: 6.488° (j) Inlier Ratio: 0.84,111: 3.167°,111: 4.224°

(k) Inlier Ratio: 0.83,111: 3.773°,111: 7.705° (l) Inlier Ratio: 0.96,111: 2.038°,111: 4.950°

Figure 3. The qualitative results of RLSAC on the fundamental matrix estimation task in different scenes. Inlier rate, rotation and
translation errors are reported. The blue lines represent the sampled minimum set points, and the green lines represent the inliers.



Table 2. Ablation study on 2D line fitting with different number of points. The mAA@0.5◦ and median error(◦) on various outlier ratios
are reported. -200 means training in 100 points and testing in 200 points. All methods are iterated 150 times.

Method
0.1 0.2 0.3 0.4 0.5 0.6 0.7

mAA ↑ Mid. ↓ mAA ↑ Mid. ↓ mAA ↑ Mid. ↓ mAA ↑ Mid. ↓ mAA ↑ Mid. ↓ mAA ↑ Mid. ↓ mAA ↑ Mid. ↓

RANSAC [3] 0.870 0.049 0.863 0.052 0.850 0.056 0.829 0.061 0.796 0.071 0.746 0.087 0.608 0.135
Ours 0.875 0.047 0.874 0.049 0.872 0.048 0.865 0.050 0.858 0.052 0.845 0.056 0.824 0.062

RANSAC-200 [3] 0.874 0.048 0.867 0.050 0.855 0.054 0.830 0.062 0.797 0.073 0.723 0.097 0.627 0.130
Ours-200 0.864 0.050 0.871 0.049 0.864 0.050 0.851 0.053 0.850 0.053 0.828 0.061 0.821 0.063

Figure 4. The mAA@0.5◦ and median error(◦) at different
iterations. The results on the 2D line fitting task at different
iterations with 0.5 outlier ratio is reported.

Table 3. The additional ablation study results of RLSAC on
fundamental matrix estimation. DIM represents dimension.

Method
mAA@10◦ ↑ Median (◦) ↓

R t ϵR ϵt

(a)
Ours (with k = 10 nearest neighbors) 0.754 0.618 0.975 1.907
Ours (with k = 20 nearest neighbors) 0.754 0.611 0.996 1.983
Ours (full, with k = 15 nearest neighbors) 0.760 0.622 0.926 1.751

(b)

Ours (with 32 DIM SVD descriptors reduction) 0.702 0.572 1.371 2.882
Ours (with 64 DIM SVD descriptors reduction) 0.698 0.566 1.450 2.998
Ours (with 16 DIM MLP reduction) 0.755 0.611 0.993 2.002
Ours (with 64 DIM MLP reduction) 0.757 0.616 0.977 1.929
Ours (full, with 32 DIM MLP reduction) 0.760 0.622 0.926 1.751

(c)
Ours (with 16 DIM EdgeConv) 0.755 0.612 1.002 1.945
Ours (with 64 DIM EdgeConv) 0.753 0.616 0.999 1.928
Ours (full, with 32 DIM EdgeConv) 0.760 0.622 0.926 1.751

(d)
Ours (with 256 DIM global MLP) 0.751 0.614 0.989 1.921
Ours (with 1024 DIM global MLP) 0.754 0.613 1.003 1.918
Ours (full, with 512 DIM global MLP) 0.760 0.622 0.926 1.751

(e)
Ours (with (64, 16) DIM head MLPs) 0.754 0.618 0.994 1.948
Ours (with (256, 64) DIM head MLPs) 0.755 0.615 0.976 1.943
Ours (full, with (128, 32) DIM head MLPs) 0.760 0.622 0.926 1.751

strategy in reinforcement learning, where RLSAC may move
into a state with lower current reward to better understand
the environment and explore optimal strategies.

The visualization of RLSAC on the fundamental matrix
estimation task is presented in Figure 3. It reveals that RL-
SAC is effective in estimating accurate fundamental matrix
to solve the precise pose transformation. Moreover, RL-
SAC performs well even with large variations in time, space,
illumination, and dynamic objects.

4. Ablation Study

We perform additional ablation studies on 2D line fitting
and fundamental matrix estimation tasks. The experimental
data and settings remain the same as in Section 5 of the main
text.

Robustness and Generalization of RLSAC in 2D Line
Fitting: The Ours-200 from Table 2 means that RLSAC
is trained using 100 points in each outlier ratio and then
tested using 200 points. For comparison, RANSAC is also
tested using 200 points. In addition, the 100 points results
are presented as RANSAC and Ours. Ours-200 outperforms
RANSAC in most scenes, while only incurring a modest
reduction in performance compared to Ours. This shows
the great robustness and generalization of RLSAC across
varying numbers of data.

Efficiency of RLSAC in 2D Line Fitting: The Figure
4 illustrates that RLSAC requires only fewer iterations to
achieve the same performance compared to RANSAC for
the same outlier ratio. Moreover, as the iterations increases,
the performance gains of both methods decrease. However,
RLSAC can leverage memory features and data features for
sampling, which enables it to sustain higher performance.

Nearest Neighbors in EdgeConv: The number of nearest
neighbors k used in EdgeConv can affect the policy network
to extract edge feature. In Table 3(a), different values of
k are evaluated and the k = 15 performs best in helping
RLSAC learn edge features.

Effect of Dimension Reduction: To reduce the com-
putational cost caused by high-dimensional data features,
the state feature need to be reduced. We attempted to re-
duce the dimension of the 128 dimensional descriptors using
singular value decomposition (SVD). However, as shown
in Table 3(b), this approach led to significant performance
degradation due to the loss of features.

In contrast, RLSAC uses a MLP to reduce the dimension
of state feature in the policy network for computational ef-
ficiency. The experimental results, as shown in Table 3(b),
demonstrate that the best performance is obtained when the
dimension of c = 261 data is reduced to c = 32 using the
MLP. The large channel gap causing information loss during
the compression process, resulting in a decline in feature
extraction ability.



Different Sizes of EdgeConv: We investigate the impact
of different sizes of EdgeConv on the task of fundamental
matrix estimation. The experiments in Table 3(c) indicate
that the 32-size EdgeConv module can extract features more
effectively, while larger sizes lead to decreased performance.
This observation may be attributed to the risk of overfitting
with overly complex models. Furthermore, comparable per-
formance can be attained with smaller network. This means
by optimizing the network structure further, high perfor-
mance can potentially be achieved using a smaller network.

Different Sizes of Global MLP: The performance of
the MLP size in the global feature extraction module is
evaluated and presented in Table 3(d). The results indicate
that an MLP size of 512 has higher performance. This can be
attributed to the fact that smaller feature vectors may struggle
to encapsulate complex global features, while excessively
large feature vectors may hinder subsequent information
extraction.

Different Sizes of Probability Head: We conduct exper-
iments to evaluate different sizes of head MLPs. The results
in Table 3(e) show that the best performance is achieved
when using head MLP with sizes (128, 32). The reason may
be the same as using MLP for dimension reduction, the large
channel gap may lead to information loss.
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